layout_tbl_graph_pmds {ggraph} | R Documentation |
Place nodes based on a multidimensional scaling of a set of pivot nodes
Description
This layout is similar to the 'mds' layout but uses only a subset of pivot nodes for the mds calculation, making it considerably faster and thus suited for large graphs
Usage
layout_tbl_graph_pmds(graph, pivots, weights = NULL, circular = FALSE)
Arguments
graph |
A tbl_graph object |
pivots |
The number of pivot nodes |
weights |
An expression evaluated on the edge data to provide edge weights for the layout. Currently ignored for the sparse version |
circular |
ignored |
Value
A data.frame with the columns x
, y
, circular
as
well as any information stored as node variables in the tbl_graph object.
Author(s)
The underlying algorithm is implemented in the graphlayouts package by David Schoch
References
Brandes, U. and Pich, C. (2006). Eigensolver Methods for Progressive Multidimensional Scaling of Large Data. In International Symposium on Graph Drawing (pp. 42-53). Springer
See Also
Other layout_tbl_graph_*:
layout_tbl_graph_auto()
,
layout_tbl_graph_backbone()
,
layout_tbl_graph_cactustree()
,
layout_tbl_graph_centrality()
,
layout_tbl_graph_circlepack()
,
layout_tbl_graph_dendrogram()
,
layout_tbl_graph_eigen()
,
layout_tbl_graph_fabric()
,
layout_tbl_graph_focus()
,
layout_tbl_graph_hive()
,
layout_tbl_graph_htree()
,
layout_tbl_graph_igraph()
,
layout_tbl_graph_linear()
,
layout_tbl_graph_manual()
,
layout_tbl_graph_matrix()
,
layout_tbl_graph_metro()
,
layout_tbl_graph_partition()
,
layout_tbl_graph_sf()
,
layout_tbl_graph_stress()
,
layout_tbl_graph_treemap()
,
layout_tbl_graph_unrooted()