ggcontinuousexpdist {ggquickeda} | R Documentation |
Create a continuous exposure fit plot
Description
Produces a logistic fit plot with a facettable exposures/quantiles/distributions in ggplot2
Usage
ggcontinuousexpdist(
data = effICGI,
response = "response",
endpoint = "Endpoint",
DOSE = "DOSE",
color_fill = "DOSE",
exposure_metrics = c("AUC", "CMAX"),
exposure_metric_split = c("median", "tertile", "quartile", "none"),
exposure_metric_soc_value = -99,
exposure_metric_plac_value = 0,
exposure_distribution = c("distributions", "lineranges", "none"),
dose_plac_value = "Placebo",
xlab = "Exposure Values",
ylab = "Probability of Response",
mean_text_size = 5,
mean_obs_bydose = TRUE,
N_text_size = 5,
binlimits_text_size = 5,
binlimits_ypos = -Inf,
binlimits_color = "gray70",
dist_position_scaler = 0.2,
dist_offset = 0,
lineranges_ypos = -1,
lineranges_dodge = 1,
yproj = TRUE,
yproj_xpos = 0,
yproj_dodge = 0.2,
yaxis_position = c("left", "right"),
facet_formula = NULL,
theme_certara = TRUE
)
Arguments
data |
Data to use with multiple endpoints stacked into Endpoint(endpoint name), response 0/1 |
response |
name of the column holding the valuesresponse 0/1 |
endpoint |
name of the column holding the name/key of the endpoint default to |
DOSE |
name of the column holding the DOSE values default to |
color_fill |
name of the column to be used for color/fill default to DOSE column |
exposure_metrics |
name(s) of the column(s) to be stacked into |
exposure_metric_split |
one of "median", "tertile", "quartile", "none" |
exposure_metric_soc_value |
special exposure code for standard of care default -99 |
exposure_metric_plac_value |
special exposure code for placebo default 0 |
exposure_distribution |
one of distributions, lineranges or none |
dose_plac_value |
string identifying placebo in DOSE column |
xlab |
text to be used as x axis label |
ylab |
text to be used as y axis label |
mean_text_size |
mean text size default to 5 |
mean_obs_bydose |
observed mean by dose TRUE/FALSE |
N_text_size |
N respondents/Ntotal by exposure bin text size default to 5 |
binlimits_text_size |
5 binlimits text size |
binlimits_ypos |
binlimits y position default to 0 |
binlimits_color |
binlimits text color default to "gray70" |
dist_position_scaler |
space occupied by the distribution default to 0.2 |
dist_offset |
offset where the distribution position starts 0 |
lineranges_ypos |
where to put the lineranges -1 |
lineranges_dodge |
lineranges vertical dodge value 1 |
yproj |
project the probabilities on y axis |
yproj_xpos |
y projection x position 0 |
yproj_dodge |
y projection dodge value 0.2 |
yaxis_position |
where to put y axis "left" or "right" |
facet_formula |
facet formula to be use otherwise |
theme_certara |
apply certara colors and format for strips and default colour/fill |
Examples
# Example 1
library(ggplot2)
library(patchwork)
effICGI <- logistic_data |>
dplyr::filter(!is.na(ICGI7))|>
dplyr::filter(!is.na(AUC))
effICGI$DOSE <- factor(effICGI$DOSE,
levels=c("0", "600", "1200","1800","2400"),
labels=c("Placebo", "600 mg", "1200 mg","1800 mg","2400 mg"))
effICGI$STUDY <- factor(effICGI$STUDY)
effICGI <- tidyr::gather(effICGI,Endpoint,response,ICGI7,BRLS)
a <- ggcontinuousexpdist(data = effICGI |> dplyr::filter(Endpoint =="ICGI7"),
response = "response",
endpoint = "Endpoint",
exposure_metrics = c("AUC"),
exposure_metric_split = c("quartile"),
exposure_metric_soc_value = -99,
exposure_metric_plac_value = 0,
dist_position_scaler = 1, dist_offset = -1 ,
yproj_xpos = -20 ,
yproj_dodge = 20 ,
exposure_distribution ="distributions")
b <- ggcontinuousexpdist(data = effICGI |> dplyr::filter(Endpoint =="BRLS"),
response = "response",
endpoint = "Endpoint",
exposure_metrics = c("AUC"),
exposure_metric_split = c("quartile"),
exposure_metric_soc_value = -99,
exposure_metric_plac_value = 0,
dist_position_scaler = 4.2, dist_offset = 5 ,
yproj_xpos = -20 ,
yproj_dodge = 20 ,
exposure_distribution ="distributions")
a / b +
plot_layout(guides = "collect") &
theme(legend.position = "top")
#Example 2
effICGI$SEX <- as.factor(effICGI$SEX)
ggcontinuousexpdist(data = effICGI |>
dplyr::filter(Endpoint =="ICGI7"),
response = "response",
endpoint = "Endpoint",
color_fill = "SEX",
exposure_metrics = c("AUC"),
exposure_metric_split = c("quartile"),
exposure_metric_soc_value = -99,
exposure_metric_plac_value = 0,
dist_position_scaler = 1, dist_offset = -1 ,
yproj_xpos = -20 ,
yproj_dodge = 20 ,
exposure_distribution ="lineranges")
## Not run:
#Example 5
## End(Not run)