| predict.gglasso {gglasso} | R Documentation | 
make predictions from a "gglasso" object.
Description
Similar to other predict methods, this functions predicts fitted values and
class labels from a fitted gglasso object.
Usage
## S3 method for class 'gglasso'
predict(object, newx, s = NULL, type = c("class", "link"), ...)
Arguments
| object | fitted  | 
| newx | matrix of new values for  | 
| s | value(s) of the penalty parameter  | 
| type | type of prediction required: 
 | 
| ... | Not used. Other arguments to predict. | 
Details
s is the new vector at which predictions are requested. If s
is not in the lambda sequence used for fitting the model, the predict
function will use linear interpolation to make predictions. The new values
are interpolated using a fraction of predicted values from both left and
right lambda indices.
Value
The object returned depends on type.
Author(s)
Yi Yang and Hui Zou
 Maintainer: Yi Yang <yi.yang6@mcgill.ca>
References
Yang, Y. and Zou, H. (2015), “A Fast Unified Algorithm for
Computing Group-Lasso Penalized Learning Problems,” Statistics and
Computing. 25(6), 1129-1141.
 BugReport:
https://github.com/emeryyi/gglasso
See Also
coef method
Examples
# load gglasso library
library(gglasso)
# load data set
data(colon)
# define group index
group <- rep(1:20,each=5)
# fit group lasso
m1 <- gglasso(x=colon$x,y=colon$y,group=group,loss="logit")
# predicted class label at x[10,]
print(predict(m1,type="class",newx=colon$x[10,]))
# predicted linear predictors at x[1:5,]
print(predict(m1,type="link",newx=colon$x[1:5,]))