autoplot.pca_common {ggfortify} | R Documentation |
Autoplot PCA-likes
Description
Autoplot PCA-likes
Usage
## S3 method for class 'pca_common'
autoplot(
object,
data = NULL,
scale = 1,
x = 1,
y = 2,
variance_percentage = TRUE,
...
)
Arguments
object |
PCA-like instance |
data |
Joined to fitting result if provided. |
scale |
scaling parameter, disabled by 0 |
x |
principal component number used in x axis |
y |
principal component number used in y axis |
variance_percentage |
show the variance explained by the principal component? |
... |
other arguments passed to [ggbiplot()] |
Examples
autoplot(stats::prcomp(iris[-5]))
autoplot(stats::prcomp(iris[-5]), data = iris)
autoplot(stats::prcomp(iris[-5]), data = iris, colour = 'Species')
autoplot(stats::prcomp(iris[-5]), label = TRUE, loadings = TRUE, loadings.label = TRUE)
autoplot(stats::prcomp(iris[-5]), frame = TRUE)
autoplot(stats::prcomp(iris[-5]), data = iris, frame = TRUE,
frame.colour = 'Species')
autoplot(stats::prcomp(iris[-5]), data = iris, frame = TRUE,
frame.type = 't', frame.colour = 'Species')
autoplot(stats::princomp(iris[-5]))
autoplot(stats::princomp(iris[-5]), data = iris)
autoplot(stats::princomp(iris[-5]), data = iris, colour = 'Species')
autoplot(stats::princomp(iris[-5]), label = TRUE, loadings = TRUE, loadings.label = TRUE)
#Plot PC 2 and 3
autoplot(stats::princomp(iris[-5]), x = 2, y = 3)
#Don't show the variance explained
autoplot(stats::princomp(iris[-5]), variance_percentage = FALSE)
d.factanal <- stats::factanal(state.x77, factors = 3, scores = 'regression')
autoplot(d.factanal)
autoplot(d.factanal, data = state.x77, colour = 'Income')
autoplot(d.factanal, label = TRUE, loadings = TRUE, loadings.label = TRUE)
[Package ggfortify version 0.4.17 Index]