mca_interpret {ggfacto} | R Documentation |
Helper table to interpret multiple correspondence analysis
Description
A table to help to interpret the meaning of axes in multiple correspondence analysis (MCA), based on Brigitte Le Roux, Analyse geometrique des donnees multidimensionnelles, Dunod, Paris, 2014 / Brigitte Le Roux and Henri Rouanet, Geometric data analysis : from correspondence analysis to structured data analysis, Kluwer, Boston, 2004. Only levels whose relative contribution to the variance of axis is superior to the mean contribution are kept. The spread between positive levels and negative levels of the same variable is calculated in percentages of the variance of the question/variable.
Usage
mca_interpret(
res.mca = res.mca,
axes = 1:min(res.mca$call$ncp, 5),
type = c("html", "console")
)
Arguments
res.mca |
An object created with |
axes |
The axes to interpret, as an integer vector. Default to the first five axes. |
type |
By default, a html table is printed. Set to |
Value
An html table (or a tibble
).
Examples
data(tea, package = "FactoMineR")
res.mca <- MCA2(tea, active_vars = 1:18)
mca_interpret(res.mca)