ggpca_3d {ggfacto} | R Documentation |
Interactive 3D Plot for Principal Component Analyses (plotly::)
Description
Interactive 3D Plot for Principal Component Analyses (plotly::)
Usage
ggpca_3d(
res.pca,
axes = c(1, 2, 3),
princ_axes_print = -3:3,
base_axe_n_breaks = 10,
ind.size = 4,
ind_name.size = 3,
title,
center = TRUE,
var_names_on = "var",
base_zoom = 1,
remove_buttons = FALSE,
cone_size = 0.33,
view = "All",
type = c("var", "ind", "main_plan", "projections"),
camera_view,
aspectratio_from_eig = FALSE,
always_make_ind_tooltips = FALSE,
var_color = "#4D4D4D",
max_ind = 500,
max_ind_seed
)
Arguments
res.pca |
The result of |
axes |
The axes to print, as a numeric vector of length 3 (or 2). |
princ_axes_print |
The breaks of the principal axes. |
base_axe_n_breaks |
The number of breaks in initial variables axes. |
ind.size |
The size of the points of individuals. |
ind_name.size |
The size of the names of individuals. |
title |
Plot title. |
center |
By default the plot is centered on the central point. Set to 'FALSE' to center on the origin of all variables (zero coordinates). |
var_names_on |
By default '"var"' the names of variables are drawn upon the initial axes. Set to '"cor"' to draw them upon correlation vectors instead. |
base_zoom |
The base level of zoom. |
remove_buttons |
Set to TRUE to remove buttons to change view. |
cone_size |
The size of the conic arrow at the end of each axe. |
view |
The starting point of view (in 3D) :
|
type |
Which elements of the graph to print, among : #'
|
camera_view |
Possibility to add a (replace 'view') |
aspectratio_from_eig |
Set to 'TRUE' to modify axes length based on eigenvalues. |
always_make_ind_tooltips |
Set to 'TRUE' to add interactive toolips for individuals. |
var_color |
The color of the initial variables/dimensions |
max_ind |
The maximun number of individuals to print. |
max_ind_seed |
The random seed used to sample individuals. |
Value
A plotly
html interactive 2d or 3d graph.
Examples
data(mtcars, package = "datasets")
mtcars <- mtcars[1:7] |> dplyr::rename(weight = wt)
res.pca <- FactoMineR::PCA(mtcars, graph = FALSE)
# Variables and individuals
ggpca_3d(res.pca)
# Circle of correlation 3D
ggpca_3d(res.pca, type = c("cor", "cor_sphere"),
var_names_on = "cor", base_zoom = 0.6,
princ_axes_print = -1:1, view = "All"
)