ggmca_3d {ggfacto} | R Documentation |
Interactive 3D Plot for Multiple Correspondence Analyses (plotly::)
Description
Interactive 3D Plot for Multiple Correspondence Analyses (plotly::)
Usage
ggmca_3d(
res.mca,
dat,
cah,
axes = 1:3,
base_zoom = 1,
remove_buttons = FALSE,
cone_size = 0.15,
view = "All",
camera_view,
aspectratio_from_eig = FALSE,
title,
ind_name.size = 10,
max_point_size = 30,
...
)
Arguments
res.mca |
An object created with |
dat |
The data in which to find the cah variable, etc. |
cah |
A variable made with |
axes |
The axes to print, as a numeric vector of length 3. |
base_zoom |
The base level of zoom. |
remove_buttons |
Set to TRUE to remove buttons to change view. |
cone_size |
The size of the conic arrow at the end of each axe. |
view |
The starting point of view (in 3D) :
|
camera_view |
Possibility to add a (replace 'view') |
aspectratio_from_eig |
Set to 'TRUE' to modify axes length based on eigenvalues. |
title |
The title of the graph. |
ind_name.size |
The size of the names of individuals. |
max_point_size |
The size of the biggest point. |
... |
Additional arguments to pass to |
Value
A plotly
html interactive 3d (or 2d) graph.
Examples
data(tea, package = "FactoMineR")
res.mca <- MCA2(tea, active_vars = 1:18)
ggmca_3d(res.mca)
# 3D graph with colored HCPC clusters (cah)
res.mca_3axes <- MCA2(tea, active_vars = 1:18, ncp = 3)
cah <- FactoMineR::HCPC(res.mca_3axes, nb.clust = 6, graph = FALSE)
tea$clust <- cah$data.clust$clust
ggmca_3d(res.mca, dat = tea, cah = "clust")