| lkjcorr_marginal {ggdist} | R Documentation | 
Marginal distribution of a single correlation from an LKJ distribution
Description
Marginal distribution for the correlation in a single cell from a correlation matrix distributed according to an LKJ distribution.
Usage
dlkjcorr_marginal(x, K, eta, log = FALSE)
plkjcorr_marginal(q, K, eta, lower.tail = TRUE, log.p = FALSE)
qlkjcorr_marginal(p, K, eta, lower.tail = TRUE, log.p = FALSE)
rlkjcorr_marginal(n, K, eta)
Arguments
x, q | 
 vector of quantiles.  | 
K | 
 Dimension of the correlation matrix. Must be greater than or equal to 2.  | 
eta | 
 Parameter controlling the shape of the distribution  | 
log, log.p | 
 logical; if TRUE, probabilities p are given as log(p).  | 
lower.tail | 
 logical; if TRUE (default), probabilities are
  | 
p | 
 vector of probabilities.  | 
n | 
 number of observations. If   | 
Details
The LKJ distribution is a distribution over correlation matrices with a single parameter, \eta.
For a given \eta and a K \times K correlation matrix R:
R \sim \textrm{LKJ}(\eta)
Each off-diagonal entry of R, r_{ij}: i \ne j, has the
following marginal distribution (Lewandowski, Kurowicka, and Joe 2009):
\frac{r_{ij} + 1}{2} \sim \textrm{Beta}\left(\eta - 1 + \frac{K}{2}, \eta - 1 + \frac{K}{2}\right)
In other words, r_{ij} is marginally distributed according to the above Beta
distribution scaled into (-1,1).
Value
-  
dlkjcorr_marginalgives the density -  
plkjcorr_marginalgives the cumulative distribution function (CDF) -  
qlkjcorr_marginalgives the quantile function (inverse CDF) -  
rlkjcorr_marginalgenerates random draws. 
The length of the result is determined by n for rlkjcorr_marginal, and is the maximum of the lengths of
the numerical arguments for the other functions.
The numerical arguments other than n are recycled to the length of the result. Only the first elements
of the logical arguments are used.
References
Lewandowski, D., Kurowicka, D., & Joe, H. (2009). Generating random correlation matrices based on vines and extended onion method. Journal of Multivariate Analysis, 100(9), 1989–2001. doi:10.1016/j.jmva.2009.04.008.
See Also
parse_dist() and marginalize_lkjcorr() for parsing specs that use the
LKJ correlation distribution and the stat_slabinterval() family of stats for visualizing them.
Examples
library(dplyr)
library(ggplot2)
theme_set(theme_ggdist())
expand.grid(
  eta = 1:6,
  K = 2:6
) %>%
  ggplot(aes(y = ordered(eta), dist = "lkjcorr_marginal", arg1 = K, arg2 = eta)) +
  stat_slab() +
  facet_grid(~ paste0(K, "x", K)) +
  scale_y_discrete(limits = rev) +
  labs(
    title = paste0(
      "Marginal correlation for LKJ(eta) prior on different matrix sizes:\n",
      "dlkjcorr_marginal(K, eta)"
    ),
    subtitle = "Correlation matrix size (KxK)",
    y = "eta",
    x = "Marginal correlation"
  ) +
  theme(axis.title = element_text(hjust = 0))