method_histogram {ggdensity} | R Documentation |
Bivariate histogram HDR estimator
Description
Function used to specify bivariate histogram density estimator
for get_hdr()
and layer functions (e.g. geom_hdr()
).
Usage
method_histogram(bins = NULL, smooth = FALSE, nudgex = "none", nudgey = "none")
Arguments
bins |
Number of bins along each axis. Either a vector of length 2 or a scalar value which is recycled for both dimensions. Defaults to normal reference rule (Scott, pg 87). |
smooth |
If |
nudgex , nudgey |
Horizontal and vertical rules for choosing witness points when |
Details
For more details on the use and implementation of the method_*()
functions,
see vignette("method", "ggdensity")
.
References
Scott, David W. Multivariate Density Estimation (2e), Wiley.
Examples
## Not run:
# Histogram estimators can be useful when data has boundary constraints
set.seed(1)
df <- data.frame(x = rexp(1e3), y = rexp(1e3))
ggplot(df, aes(x, y)) +
geom_hdr(method = method_histogram()) +
geom_point(size = 1)
# The resolution of the histogram estimator can be set via `bins`
ggplot(df, aes(x, y)) +
geom_hdr(method = method_histogram(bins = c(8, 25))) +
geom_point(size = 1)
# By setting `smooth = TRUE`, we can graphically smooth the "blocky" HDRs
ggplot(df, aes(x, y)) +
geom_hdr(method = method_histogram(smooth = TRUE)) +
geom_point(size = 1)
# However, we need to set `nudgex` and `nudgey` to align the HDRs correctly
ggplot(df, aes(x, y)) +
geom_hdr(method = method_histogram(smooth = TRUE, nudgex = "left", nudgey = "down")) +
geom_point(size = 1)
# Can also be used with `get_hdr()` for numerical summary of HDRs
res <- get_hdr(df, method = method_histogram())
str(res)
## End(Not run)
[Package ggdensity version 1.0.0 Index]