ggcorrplot {ggcorrplot} | R Documentation |
Visualization of a correlation matrix using ggplot2
Description
ggcorrplot(): A graphical display of a correlation matrix using ggplot2.
cor_pmat(): Compute a correlation matrix p-values.
Usage
ggcorrplot(
corr,
method = c("square", "circle"),
type = c("full", "lower", "upper"),
ggtheme = ggplot2::theme_minimal,
title = "",
show.legend = TRUE,
legend.title = "Corr",
show.diag = NULL,
colors = c("blue", "white", "red"),
outline.color = "gray",
hc.order = FALSE,
hc.method = "complete",
lab = FALSE,
lab_col = "black",
lab_size = 4,
p.mat = NULL,
sig.level = 0.05,
insig = c("pch", "blank"),
pch = 4,
pch.col = "black",
pch.cex = 5,
tl.cex = 12,
tl.col = "black",
tl.srt = 45,
digits = 2,
as.is = FALSE
)
cor_pmat(x, ...)
Arguments
corr |
the correlation matrix to visualize |
method |
character, the visualization method of correlation matrix to be used. Allowed values are "square" (default), "circle". |
type |
character, "full" (default), "lower" or "upper" display. |
ggtheme |
ggplot2 function or theme object. Default value is 'theme_minimal'. Allowed values are the official ggplot2 themes including theme_gray, theme_bw, theme_minimal, theme_classic, theme_void, .... Theme objects are also allowed (e.g., 'theme_classic()'). |
title |
character, title of the graph. |
show.legend |
logical, if TRUE the legend is displayed. |
legend.title |
a character string for the legend title. lower triangular, upper triangular or full matrix. |
show.diag |
NULL or logical, whether display the correlation
coefficients on the principal diagonal. If |
colors |
a vector of 3 colors for low, mid and high correlation values. |
outline.color |
the outline color of square or circle. Default value is "gray". |
hc.order |
logical value. If TRUE, correlation matrix will be hc.ordered using hclust function. |
hc.method |
the agglomeration method to be used in hclust (see ?hclust). |
lab |
logical value. If TRUE, add correlation coefficient on the plot. |
lab_col , lab_size |
size and color to be used for the correlation coefficient labels. used when lab = TRUE. |
p.mat |
matrix of p-value. If NULL, arguments sig.level, insig, pch, pch.col, pch.cex is invalid. |
sig.level |
significant level, if the p-value in p-mat is bigger than sig.level, then the corresponding correlation coefficient is regarded as insignificant. |
insig |
character, specialized insignificant correlation coefficients, "pch" (default), "blank". If "blank", wipe away the corresponding glyphs; if "pch", add characters (see pch for details) on corresponding glyphs. |
pch |
add character on the glyphs of insignificant correlation coefficients (only valid when insig is "pch"). Default value is 4. |
pch.col , pch.cex |
the color and the cex (size) of pch (only valid when insig is "pch"). |
tl.cex , tl.col , tl.srt |
the size, the color and the string rotation of text label (variable names). |
digits |
Decides the number of decimal digits to be displayed (Default: '2'). |
as.is |
A logical passed to |
x |
numeric matrix or data frame |
... |
other arguments to be passed to the function cor.test. |
Value
ggcorrplot(): Returns a ggplot2
cor_pmat(): Returns a matrix containing the p-values of correlations
Examples
# Compute a correlation matrix
data(mtcars)
corr <- round(cor(mtcars), 1)
corr
# Compute a matrix of correlation p-values
p.mat <- cor_pmat(mtcars)
p.mat
# Visualize the correlation matrix
# --------------------------------
# method = "square" or "circle"
ggcorrplot(corr)
ggcorrplot(corr, method = "circle")
# Reordering the correlation matrix
# --------------------------------
# using hierarchical clustering
ggcorrplot(corr, hc.order = TRUE, outline.color = "white")
# Types of correlogram layout
# --------------------------------
# Get the lower triangle
ggcorrplot(corr,
hc.order = TRUE, type = "lower",
outline.color = "white"
)
# Get the upeper triangle
ggcorrplot(corr,
hc.order = TRUE, type = "upper",
outline.color = "white"
)
# Change colors and theme
# --------------------------------
# Argument colors
ggcorrplot(corr,
hc.order = TRUE, type = "lower",
outline.color = "white",
ggtheme = ggplot2::theme_gray,
colors = c("#6D9EC1", "white", "#E46726")
)
# Add correlation coefficients
# --------------------------------
# argument lab = TRUE
ggcorrplot(corr,
hc.order = TRUE, type = "lower",
lab = TRUE,
ggtheme = ggplot2::theme_dark(),
)
# Add correlation significance level
# --------------------------------
# Argument p.mat
# Barring the no significant coefficient
ggcorrplot(corr,
hc.order = TRUE,
type = "lower", p.mat = p.mat
)
# Leave blank on no significant coefficient
ggcorrplot(corr,
p.mat = p.mat, hc.order = TRUE,
type = "lower", insig = "blank"
)
# Changing number of digits for correlation coeffcient
# --------------------------------
ggcorrplot(cor(mtcars),
type = "lower",
insig = "blank",
lab = TRUE,
digits = 3
)