stat_QC_cap_vlines {ggQC} | R Documentation |
Vertical Line Capability Stat
Description
Draws Vertical Capability Stats
Usage
stat_QC_cap_vlines(LSL, USL, method = "xBar.rBar", show = c("LSL",
"USL"), mapping = NULL, data = NULL, inherit.aes = TRUE, ...)
Arguments
LSL |
numeric, Customer's lower specification limit |
USL |
numeric, Customer's Upper specification limit |
method |
string, calling the following methods:
|
show |
vector, indicating which lines to draw ie., c("LCL", "LSL", "X", "USL", "UCL")
|
mapping |
Set of aesthetic mappings created by |
data |
The data to be displayed in this layer. There are three options: If A A |
inherit.aes |
If |
... |
Other arguments passed on to |
Value
vertical lines for histogram and density plots.
Examples
# Load Libraries ----------------------------------------------------------
require(ggQC)
require(ggplot2)
# Setup Data --------------------------------------------------------------
set.seed(5555)
Process1 <- data.frame(ProcessID = as.factor(rep(1,100)),
Value = rnorm(100,10,1),
Subgroup = rep(1:20, each=5),
Process_run_id = 1:100)
set.seed(5556)
Process2 <- data.frame(ProcessID = as.factor(rep(2,100)),
Value = rnorm(100,20, 1),
Subgroup = rep(1:10, each=10),
Process_run_id = 101:200)
df <- rbind(Process1, Process2)
######################
## Example 1 XmR ##
######################
##You may need to use the r-studio Zoom for these plots or make the size of the
##stat_QC_cap_summary smaller with size = some number"
method <- "XmR"
# Normal Histogram XmR --------------------------------------------------------
EX1.1 <- ggplot(df[df$ProcessID == 1,], aes(x=Value, QC.Subgroup=Subgroup)) +
geom_histogram(binwidth = 1, color="purple") +
geom_hline(yintercept=0, color="grey") +
stat_QC_cap_vlines(LSL = 5, USL = 15, show=c("X", "LSL", "USL"), method=method) +
stat_QC_cap_vlabels(LSL = 5, USL = 15, show=c("X", "LSL", "USL"), method=method) +
stat_QC_cap_summary(LSL = 5, USL = 15, method=method,
#show="ALL",
#show=c("TOL","DNS", "Cp", "Cpk", "Pp", "Ppk",
# "LCL", "X", "UCL", "Sig"),
#show=c("Sig","TOL", "DNS"),
show=c("TOL","DNS", "Cp", "Cpk", "Pp", "Ppk"),
color="black", digits=2, size=4) +
scale_x_continuous(expand = expand_scale(mult = c(0.15,.8))) +
ylim(0,45)
#Ex1.1
# Facet Histogram XmR -----------------------------------------------------
EX1.2 <- ggplot(df[order(df$Process_run_id),],
aes(x=Value, QC.Subgroup=Subgroup, color=ProcessID)) +
geom_histogram(binwidth = 1) +
geom_hline(yintercept=0, color="grey") +
stat_QC_cap_vlines(LSL = 5, USL = 15, method=method) +
stat_QC_cap_vlabels(LSL = 5, USL = 15, method=method) +
stat_QC_cap_summary(LSL = 5, USL = 15, method=method,
#show="ALL",
#show=c("TOL","DNS", "Cp", "Cpk", "Pp", "Ppk",
# "LCL", "X", "UCL", "Sig"),#show=c("Sig","TOL", "DNS"),
show=c("TOL","DNS", "Cp", "Cpk", "Pp", "Ppk"),
color="black", digits=4, size=4) +
scale_x_continuous(expand = ggplot2::expand_scale(mult = c(0.15,.8))) +
facet_grid(.~ProcessID) + ylim(0,45)
#EX1.2
# Facet Density Plot XmR -------------------------------------------------
EX1.3 <- ggplot(df[df$ProcessID == 1,], aes(x=Value, QC.Subgroup=Subgroup)) +
geom_density(bw = .4, fill="purple", trim=TRUE) +
geom_hline(yintercept=0, color="grey") +
stat_QC_cap_vlines(LSL = 5, USL = 15, show=c("X", "LSL", "USL"), method=method) +
stat_QC_cap_vlabels(LSL = 5, USL = 15, show=c("X", "LSL", "USL"), method=method) +
stat_QC_cap_summary(LSL = 5, USL = 15, method=method,
#show="ALL",
#show=c("TOL","DNS", "Cp", "Cpk", "Pp", "Ppk",
# "LCL", "X", "UCL", "Sig"),
#show=c("Sig","TOL", "DNS"),
show=c("TOL","DNS", "Cp", "Cpk", "Pp", "Ppk"),
color="black", digits=2, size=4) +
scale_x_continuous(expand = expand_scale(mult = c(0.15,.8))) + ylim(0,.5)
#EX1.3
# Facet Density Plot XmR --------------------------------------------------
EX1.4 <- ggplot(df[order(df$Process_run_id),],
aes(x=Value, QC.Subgroup=Subgroup, color=ProcessID)) +
geom_density(bw = .4, fill="grey", trim=TRUE ) +
stat_QC_cap_vlines(LSL = 5, USL = 15, method=method) +
stat_QC_cap_vlabels(LSL = 5, USL = 15, method=method) +
stat_QC_cap_summary(LSL = 5, USL = 15, method=method, #py=.3,
#show="ALL",
#show=c("TOL","DNS", "Cp", "Cpk", "Pp", "Ppk",
# "LCL", "X", "UCL", "Sig"),
#show=c("Sig","TOL", "DNS"),
show=c("TOL","DNS", "Cp", "Cpk", "Pp", "Ppk"),
color="black", digits=4, size=4) +
scale_x_continuous(expand = ggplot2::expand_scale(mult = c(0.15,.8))) +
# geom_hline(yintercept=0, color="black") +
facet_grid(.~ProcessID) + ylim(0,.5)
#EX1.4
########################################
## Example 2: xBar.rBar or xBar.sBar ##
########################################
method <- "xBar.rBar" #Alternativly Use "xBar.sBar" if desired
# Single Histogram xBar.rBar ----------------------------------------------
EX2.1 <- ggplot(df[df$ProcessID==1,], aes(x=Value, QC.Subgroup=Subgroup)) +
geom_histogram(binwidth = 1) +
stat_QC_cap_vlines(LSL = 5, USL = 15, method=method) +
stat_QC_cap_vlabels(LSL = 5, USL = 15, method=method) +
stat_QC_cap_summary(LSL = 5, USL = 15, method=method, #py=.3,
#show="ALL",
#show=c("TOL","DNS", "Cp", "Cpk", "Pp", "Ppk",
# "LCL", "X", "UCL", "Sig"),
#show=c("Sig","TOL", "DNS"),
show=c("TOL","DNS", "Cp", "Cpk", "Pp", "Ppk"),
color="black", digits=4, size=4) +
scale_x_continuous(expand = ggplot2::expand_scale(mult = c(0.15,.8))) #+
#EX2.1
# Faceted Histogram xBar.rBar ---------------------------------------------
EX2.2 <- ggplot(df, aes(x=Value, QC.Subgroup=Subgroup)) +
geom_histogram(binwidth = 1) +
stat_QC_cap_vlines(LSL = 5, USL = 15, method=method) +
stat_QC_cap_vlabels(LSL = 5, USL = 15, method=method) +
stat_QC_cap_summary(LSL = 5, USL = 15, method=method, #py=.3,
#show="ALL",
#show=c("TOL","DNS", "Cp", "Cpk", "Pp", "Ppk",
# "LCL", "X", "UCL", "Sig"),
#show=c("Sig","TOL", "DNS"),
show=c("TOL","DNS", "Cp", "Cpk", "Pp", "Ppk"),
color="black", digits=4, size=4) +
scale_x_continuous(expand = ggplot2::expand_scale(mult = c(0.15,.8)))+
facet_grid(.~ProcessID, scales="free_x")
#EX2.2
# Single Density xBar.rBar ----------------------------------------------
EX2.3 <- ggplot(df[df$ProcessID==1,], aes(x=Value, QC.Subgroup=Subgroup)) +
geom_density(bw = .4, fill="grey", alpha=.4) +
stat_QC_cap_vlines(LSL = 5, USL = 15, method=method) +
stat_QC_cap_vlabels(LSL = 5, USL = 15, method=method) +
stat_QC_cap_summary(LSL = 5, USL = 15, method=method, #py=.3,
#show="ALL",
#show=c("TOL","DNS", "Cp", "Cpk", "Pp", "Ppk",
# "LCL", "X", "UCL", "Sig"),
#show=c("Sig","TOL", "DNS"),
show=c("TOL","DNS", "Cp", "Cpk", "Pp", "Ppk"),
color="black", digits=4, size=4) +
scale_x_continuous(expand = ggplot2::expand_scale(mult = c(0.15,.8))) #+
#EX2.3
# Faceted Density xBar.rBar ---------------------------------------------
EX2.4 <- ggplot(df, aes(x=Value, QC.Subgroup=Subgroup)) +
geom_density(bw = .4, fill="grey", alpha=.4) +
stat_QC_cap_vlines(LSL = 5, USL = 15, method=method) +
stat_QC_cap_vlabels(LSL = 5, USL = 15, method=method) +
stat_QC_cap_summary(LSL = 5, USL = 15, method=method, #py=.3,
#show="ALL",
#show=c("TOL","DNS", "Cp", "Cpk", "Pp", "Ppk",
# "LCL", "X", "UCL", "Sig"),
#show=c("Sig","TOL", "DNS"),
show=c("TOL","DNS", "Cp", "Cpk", "Pp", "Ppk"),
color="black", digits=4, size=4) +
scale_x_continuous(expand = ggplot2::expand_scale(mult = c(0.15,.8)))+
facet_grid(.~ProcessID, scales="free_x")
#EX2.4
###############################
## Example 3: xBar.rMedian ##
###############################
## Plots involving medians should give warning: "median based QC methods represent
## at best *potential* process capability"
##These plot work the same as in examples 2.X; below is an example.
method <- "xBar.rMedian"
EX3.1 <- ggplot(df[order(df$Process_run_id),], aes(x=Value, QC.Subgroup=Run)) +
geom_histogram(binwidth = 1) +
stat_QC_cap_vlines(LSL = 5, USL = 15, method=method) +
stat_QC_cap_vlabels(LSL = 5, USL = 15, method=method) +
stat_QC_cap_summary(LSL = 5, USL = 15, method=method, #py=.3,
#show="ALL",
#show=c("TOL","DNS", "Cp", "Cpk", "Pp", "Ppk",
# "LCL", "X", "UCL", "Sig"),
#show=c("Sig","TOL", "DNS"),
show=c("TOL","DNS", "Cp", "Cpk", "Pp", "Ppk"),
color="black", digits=4, size=4) +
scale_x_continuous(expand = ggplot2::expand_scale(mult = c(0.15,.8)))
#EX3.1