ggInterval_hist {ggESDA} | R Documentation |
Histogram for symbolic data with equal-bin or unequal-bin.
Description
Visualize the continuous variable distribution by dividing the x axis into bins,and calculating the frequency of observation interval in each bin.
Usage
ggInterval_hist(data = NULL,mapping = aes(NULL),method="equal-bin",bins=10,
plotAll = FALSE, position = "identity", alpha = 0.5)
Arguments
data |
A ggESDA object.It can also be either RSDA object or classical data frame,which will be automatically convert to ggESDA data. |
mapping |
Set of aesthetic mappings created by aes() or aes_(). If specified and inherit. aes = TRUE (the default), it is combined with the default mapping at the top level of the plot. You must supply mapping if there is no plot mapping. It is the same as the mapping of ggplot2. |
method |
It can be equal-bin(default) or unequal-bin.Enqual-bin means the width in histogram is equal, which represent all intervals divided have the same range. unequal-bin means the range of intervals are not the same,and it can be more general on data. Thus, the bins of unequal-bin method depends on the data, and the argument "bins" will be unused. |
bins |
x axis bins,which mean how many partials the variable |
plotAll |
boolean, whether plot all variables, default FALSE. will be separate into. |
position |
"stack" or "identity" |
alpha |
fill alpha |
Value
Return a ggplot2 object.
Examples
ggInterval_hist(mtcars,aes(x=wt))
ggInterval_hist(iris,aes(iris$Petal.Length,col="blue",alpha=0.2,
fill="red"),bins=30)
d<-data.frame(x=rnorm(1000,0,1))
p<-ggInterval_hist(d,aes(x=x),bins=40,method="equal-bin")$plot
p
p+scale_fill_manual(values=rainbow(40))+labs(title="myNorm")