| plot.gformula_continuous_eof {gfoRmula} | R Documentation | 
Plot method for objects of class "gformula_continuous_eof"
Description
This function generates graphs of the mean simulated vs. observed values at each time point of the time-varying covariates under the natural course. For categorical covariates, the observed and simulated probability of each level are plotted at each time point.
Usage
## S3 method for class 'gformula_continuous_eof'
plot(
  x,
  covnames = NULL,
  ncol = NULL,
  nrow = NULL,
  common.legend = TRUE,
  legend = "bottom",
  xlab = NULL,
  ylab_cov = NULL,
  ...
)
Arguments
x | 
 Object of class "gformula_continuous_eof".  | 
covnames | 
 Vector of character strings specifying the names of the time-varying covariates to be plotted. The ordering of covariates given here is used in the plot grid. Time-varying covariates of type   | 
ncol | 
 Number of columns in the plot grid. By default, two columns are used when there is at least two plots.  | 
nrow | 
 Number of rows in the plot grid. By default, a maximum of six rows is used and additional plots are included in subsequent pages.  | 
common.legend | 
 Logical scalar indicating whether to include a legend. The default is   | 
legend | 
 Character string specifying the legend position. Valid values are   | 
xlab | 
 Character string for the x axes of all plots. By default, this argument is set to the   | 
ylab_cov | 
 Vector of character strings for the y axes of the plots for the covariates. This argument must be the same length as   | 
... | 
 Other arguments, which are passed to   | 
Value
An object of class "ggarrange". See documentation of ggarrange.
See Also
Examples
## Estimating the effect of treatment strategies on the mean of a continuous
## end of follow-up outcome
library('Hmisc')
id <- 'id'
time_name <- 't0'
covnames <- c('L1', 'L2', 'A')
outcome_name <- 'Y'
covtypes <- c('categorical', 'normal', 'binary')
histories <- c(lagged)
histvars <- list(c('A', 'L1', 'L2'))
covparams <- list(covmodels = c(L1 ~ lag1_A + lag1_L1 + L3 + t0 +
                                  rcspline.eval(lag1_L2, knots = c(-1, 0, 1)),
                                L2 ~ lag1_A + L1 + lag1_L1 + lag1_L2 + L3 + t0,
                                A ~ lag1_A + L1 + L2 + lag1_L1 + lag1_L2 + L3 + t0))
ymodel <- Y ~ A + L1 + L2 + lag1_A + lag1_L1 + lag1_L2 + L3
intvars <- list('A', 'A')
interventions <- list(list(c(static, rep(0, 7))),
                      list(c(static, rep(1, 7))))
int_descript <- c('Never treat', 'Always treat')
nsimul <- 10000
gform_cont_eof <- gformula_continuous_eof(obs_data = continuous_eofdata,
                                          id = id,
                                          time_name = time_name,
                                          covnames = covnames,
                                          outcome_name = outcome_name,
                                          covtypes = covtypes,
                                          covparams = covparams, ymodel = ymodel,
                                          intvars = intvars,
                                          interventions = interventions,
                                          int_descript = int_descript,
                                          histories = histories, histvars = histvars,
                                          basecovs = c("L3"),
                                          nsimul = nsimul, seed = 1234)
plot(gform_cont_eof)