selection.metrics {gesso} | R Documentation |
Selection metrics
Description
Calculates principal selection metrics for the binary zero/non-zero classification problem (sensitivity, specificity, precision, auc).
Usage
selection.metrics(true_b_g, true_b_gxe, estimated_b_g, estimated_b_gxe)
Arguments
true_b_g |
vector of true main effect coefficients |
true_b_gxe |
vector of true interaction coefficients |
estimated_b_g |
vector of estimated main effect coefficients |
estimated_b_gxe |
vector of estimated interaction coefficients |
Value
A list of principal selection metrics
b_g_non_zero |
number of non-zero main effects |
b_gxe_non_zero |
number of non-zero interactions |
mse_b_g |
mean squared error for estimation of main effects effect sizes |
mse_b_gxe |
mean squared error for estimation of interactions effect sizes |
sensitivity_g |
recall of the non-zero main effects |
specificity_g |
recall of the zero main effects |
precision_g |
precision with respect to non-zero main effects |
sensitivity_gxe |
recall of the non-zero interactions |
specificity_gxe |
recall of the zero interactions |
precision_gxe |
precision with respect to non-zero interactions |
auc_g |
area under the curve for zero/non-zero binary classification problem for main effects |
auc_gxe |
area under the curve for zero/non-zero binary classification problem for interactions |
Examples
data = data.gen()
model = gesso.cv(data$G_train, data$E_train, data$Y_train)
gxe_coefficients = gesso.coef(model$fit, model$lambda_min)$beta_gxe
g_coefficients = gesso.coef(model$fit, model$lambda_min)$beta_g
selection.metrics(data$Beta_G, data$Beta_GxE, g_coefficients, gxe_coefficients)