Random values generation from the GEP, EP and PE distributions {geppe} | R Documentation |
Random values generation from the GEP, EP and PE distributions
Description
Random values generation from the GEP, EP and PE distributions.
Usage
repois(n, beta, lambda)
rgep(n, beta, alpha, lambda)
rpe(n, theta, lambda)
Arguments
n |
The sample size. |
beta |
A strictly positive number, the scale parameter ( |
alpha |
A stritly positive number, the |
theta |
A strictly positive number, the shape parameter ( |
lambda |
A strictly positive number, the shape parameter ( |
Details
In order to generate values from these distributions the inverse rejection sampling is used.
Value
A vector with generated values from the GEP, EP or the PE distribution.
Author(s)
Sofia Piperaki.
R implementation and documentation: Sofia Piperaki sofiapip23@gmail.com and Michail Tsagris mtsagris@uoc.gr.
References
Barreto-Souza W. and Cribari-Neto F. (2009). A generalization of the exponential-Poisson distribution. Statistics and Probability Letters, 79(24): 2493–2500.
Louzada F., Ramos P. L. and Ferreira H. P. (2020). Exponential-Poisson distribution: estimation and applications to rainfall and aircraft data with zero occurrence. Communications in Statistics-Simulation and Computation, 49(4): 1024–1043.
Rodrigues G. C., Louzada F. and Ramos P. L. (2018). Poisson-exponential distribution: different methods of estimation. Journal of Applied Statistics, 45(1): 128–144.
See Also
Examples
x <- rgep(100, 1, 2, 3)