Density computation of the GEP, EP and PE distributions {geppe} | R Documentation |
Density computation of the GEP, EP and PE distributions
Description
Density computation of the GEP, EP and PE distributions.
Usage
depois(x, beta, lambda, logged = FALSE)
dgep(x, beta, alpha, lambda, logged = FALSE)
dpe(x, theta, lambda, logged = FALSE)
Arguments
x |
A numerical vector with non-negative values. |
beta |
A strictly positive number, the scale parameter ( |
alpha |
A stritly positive number, the |
theta |
A strictly positive number, the shape parameter ( |
lambda |
A strictly positive number, the shape parameter ( |
logged |
Should the logarithm of the density values be computed? The default value is FALSE. |
Details
The density values of the GEP, EP and PE distributions are computed.
The density function of the EP is given by
f(x)=\dfrac{\lambda \beta e^{-\lambda-\beta x + \lambda e^{-\beta x}}}{1-e^{-\lambda}}.
The density function of the GEP is given by
f(x)=\dfrac{\alpha \lambda \beta}{\left(1-e^{-\lambda}\right)^{\alpha}}\left(1-e^{-\lambda+\lambda e^{-\beta x}}\right)^{\alpha-1}e^{-\lambda -\beta x + \lambda e^{-\beta x}}.
The density function of the PE is given by
f(x)=\dfrac{\theta \lambda e^{-\lambda x-\theta e^{\lambda x}}}{1-e^{-\theta}}.
Value
A vector with the (logged) density values.
Author(s)
Sofia Piperaki.
R implementation and documentation: Sofia Piperaki sofiapip23@gmail.com and Michail Tsagris mtsagris@uoc.gr.
References
Barreto-Souza W. and Cribari-Neto F. (2009). A generalization of the exponential-Poisson distribution. Statistics and Probability Letters, 79(24): 2493–2500.
Louzada F., Ramos P. L. and Ferreira H. P. (2020). Exponential-Poisson distribution: estimation and applications to rainfall and aircraft data with zero occurrence. Communications in Statistics-Simulation and Computation, 49(4): 1024–1043.
Rodrigues G. C., Louzada F. and Ramos P. L. (2018). Poisson-exponential distribution: different methods of estimation. Journal of Applied Statistics, 45(1): 128–144.
See Also
Examples
x <- rgep(100, 1, 2, 3)
y <- dgep(x, 1, 2, 3, logged = TRUE)
sum(y)