likfitLgm {geostatsp} | R Documentation |
Likelihood Based Parameter Estimation for Gaussian Random Fields
Description
Maximum likelihood (ML) or restricted maximum likelihood (REML) parameter estimation for (transformed) Gaussian random fields.
Usage
likfitLgm(formula, data,
paramToEstimate = c("range","nugget"),
reml=TRUE,
coordinates=data,
param=NULL,
upper=NULL,lower=NULL, parscale=NULL,
verbose=FALSE)
loglikLgm(param,
data, formula, coordinates=data,
reml=TRUE,
minustwotimes=TRUE,
moreParams=NULL)
Arguments
formula |
A formula for the fixed effects portion of the model, specifying a response and covariates.
Alternately, |
data |
An object of class |
coordinates |
A |
param |
A vector of model parameters, with named elements being amongst
|
reml |
Whether to use Restricted Likelihood rather than Likelihood, defaults to |
paramToEstimate |
Vector of names of model parameters to estimate, with parameters excluded from this list being fixed. The variance parameter and regression coefficients are always estimated even if not listed. |
lower |
Named vector of lower bounds for model parameters passed to |
upper |
Upper bounds, as above. |
parscale |
Named vector of scaling of parameters passed as |
minustwotimes |
Return -2 times the log likelihood rather than the likelihood |
moreParams |
Vector of additional parameters, combined with |
verbose |
if |
Value
likfitLgm
produces list with elements
parameters |
Maximum Likelihood Estimates of model parameters |
varBetaHat |
Variance matrix of the estimated regression parameters |
optim |
results from |
trend |
Either formula for the fixed effects or names of the columns
of the model matrix, depending on |
summary |
a table of parameter estimates, standard errors, confidence intervals, p values, and a logical value indicating whether each parameter was estimated as opposed to fixed. |
resid |
residuals, being the observations minus the fixed effects, on the transformed scale. |
loglikLgm
returns a scalar value, either the log likelihood or -2 times the
log likelihood. Attributes of this result include the vector of
parameters (including the MLE's computed for the variance and coefficients),
and the variance matrix of the coefficient MLE's.
See Also
Examples
n=40
mydat = vect(
cbind(runif(n), seq(0,1,len=n)),
atts=data.frame(cov1 = rnorm(n), cov2 = rpois(n, 0.5))
)
# simulate a random field
trueParam = c(variance=2^2, range=0.35, shape=2, nugget=0.5^2)
set.seed(1)
oneSim = RFsimulate(model=trueParam,x=mydat)
values(mydat) = cbind(values(mydat) , values(oneSim))
# add fixed effects
mydat$Y = -3 + 0.5*mydat$cov1 + 0.2*mydat$cov2 +
mydat$sim + rnorm(length(mydat), 0, sd=sqrt(trueParam["nugget"]))
plot(mydat, "sim", col=rainbow(10), main="U")
plot(mydat, "Y", col=rainbow(10), main="Y")
myres = likfitLgm(
formula=Y ~ cov1 + cov2,
data=mydat,
param=c(range=0.1,nugget=0.1,shape=2),
paramToEstimate = c("range","nugget")
)
myres$summary[,1:4]
# plot variograms of data, true model, and estimated model
myv = variog(mydat, formula=Y ~ cov1 + cov2,option="bin", max.dist=0.5)
# myv will be NULL if geoR isn't installed
if(!is.null(myv)){
plot(myv, ylim=c(0, max(c(1.2*sum(trueParam[c("variance", "nugget")]),myv$v))),
main="variograms")
distseq = seq(0, 0.5, len=50)
lines(distseq,
sum(myres$param[c("variance", "nugget")]) - matern(distseq, param=myres$param),
col='blue', lwd=3)
lines(distseq,
sum(trueParam[c("variance", "nugget")]) - matern(distseq, param=trueParam),
col='red')
legend("bottomright", fill=c("black","red","blue"),
legend=c("data","true","MLE"))
}
# without a nugget
myresNoN = likfitLgm(
formula=Y ~ cov1 + cov2,
data=mydat,
param=c(range=0.1,nugget=0,shape=1),
paramToEstimate = c("range")
)
myresNoN$summary[,1:4]
# plot variograms of data, true model, and estimated model
myv = variog(mydat, formula=Y ~ cov1 + cov2,option="bin", max.dist=0.5)
if(!is.null(myv)){
plot(myv, ylim=c(0, max(c(1.2*sum(trueParam[c("variance", "nugget")]),myv$v))),
main="variograms")
distseq = seq(0, 0.5, len=50)
lines(distseq,
sum(myres$param[c("variance", "nugget")]) - matern(distseq, param=myres$param),
col='blue', lwd=3)
lines(distseq,
sum(trueParam[c("variance", "nugget")]) - matern(distseq, param=trueParam),
col='red')
lines(distseq,
sum(myresNoN$param[c("variance", "nugget")]) -
matern(distseq, param=myresNoN$param),
col='green', lty=2, lwd=3)
legend("bottomright", fill=c("black","red","blue","green"),
legend=c("data","true","MLE","no N"))
}
# calculate likelihood
temp=loglikLgm(param=myres$param,
data=mydat,
formula = Y ~ cov1 + cov2,
reml=FALSE, minustwotimes=FALSE)
# an anisotropic example
trueParamAniso = param=c(variance=2^2, range=0.2, shape=2,
nugget=0,anisoRatio=4,anisoAngleDegrees=10, nugget=0)
mydat$U = geostatsp::RFsimulate(trueParamAniso,mydat)$sim
mydat$Y = -3 + 0.5*mydat$cov1 + 0.2*mydat$cov2 +
mydat$U + rnorm(length(mydat), 0, sd=sqrt(trueParamAniso["nugget"]))
oldpar = par(no.readonly = TRUE)
par(mfrow=c(1,2), mar=rep(0.1, 4))
plot(mydat, col=as.character(cut(mydat$U, breaks=50, labels=heat.colors(50))),
pch=16, main="aniso")
plot(mydat, col=as.character(cut(mydat$Y, breaks=50, labels=heat.colors(50))),
pch=16,main="iso")
myres = likfitLgm(
formula=Y ~ cov1 + cov2,
data=mydat,
param=c(range=0.1,nugget=0,shape=2, anisoAngleDegrees=0, anisoRatio=2),
paramToEstimate = c("range","nugget","anisoRatio","anisoAngleDegrees")
)
myres$summary
par(oldpar)
par(mfrow=c(1,2))
myraster = rast(nrows=30,ncols=30,xmin=0,xmax=1,ymin=0,ymax=1)
covEst = matern(myraster, y=c(0.5, 0.5), par=myres$param)
covTrue = matern(myraster, y=c(0.5, 0.5), par=trueParamAniso)
plot(covEst, main="estimate")
plot(covTrue, main="true")
par(oldpar)