idwST.cv {geosptdb} | R Documentation |
IDW spatio-temporal leave-one-out cross validation
Description
Generate the RMSPE value which is given by Inverse Distance Weighting (IDW) interpolation.
Usage
idwST.cv(formula, data, n.neigh, C, factor.p, progress)
Arguments
formula |
formula that defines a detrended linear model, use |
data |
SpatialPointsDataFrame: should contain the spatio-temporal dependent variable, independent variables (statics and/or dynamics), spatial coordinates and the time as an integer or numerical variable. |
n.neigh |
number of nearest observations that should be used for a rbf.st prediction, where nearest is defined in terms of the spatio-temporal locations |
C |
numeric; associated to time factor, we recommend using the parameter found by
minimizing the root-mean-square prediction errors using cross-validation. Using idwST.cv and |
factor.p |
numeric; specify the inverse distance weighting power ( |
progress |
whether a progress bar shall be printed for spatio-temporal inverse-distance weighted function; default=TRUE |
Value
returns the RMSPE value
References
Melo, C. E. (2012). Analisis geoestadistico espacio tiempo basado en distancias y splines con aplicaciones. PhD. Thesis. Universitat de Barcelona. 276 p. [link]
See Also
Examples
## Not run:
data(croatiadb)
coordinates(croatiadb) <- ~x+y
idwST.cv(MTEMP~1, croatiadb[,1:2], n.neigh=10, C=1, factor.p=2)
## End(Not run)