rbf.cv {geospt} | R Documentation |
rbf cross validation leave-one-out
Description
Generate the RMSPE value, which is given by the radial basis function
with smoothing parameter eta
and robustness parameter rho
.
Usage
rbf.cv(formula, data, eta, rho, n.neigh, func)
Arguments
formula |
formula that defines the dependent variable as a linear model of independent variables; suppose the dependent variable has name |
data |
SpatialPointsDataFrame: should contain the dependent variable, independent variables, and coordinates. |
eta |
the optimal smoothing parameter; we recommend using the parameter found by minimizing the root-mean-square prediction errors using cross-validation |
rho |
value of optimal robustness parameter; we recommend using the parameter
found by minimizing the root-mean-square prediction errors using cross-validation.
eta and rho parameters can be optimized simultaneously, through the |
n.neigh |
number of nearest observations that should be used for a rbf prediction, where nearest is defined in terms of the spatial locations |
func |
radial basis function model type, e.g. "GAU", "EXPON", "TRI", "TPS", "CRS", "ST", "IM" and "M", are currently available |
Value
returns the RMSPE value
See Also
Examples
data(preci)
coordinates(preci)<-~x+y
rbf.cv(prec~1, preci, eta=0.2589, rho=0, n.neigh=9, func="M")