| rbf.cv {geospt} | R Documentation |
rbf cross validation leave-one-out
Description
Generate the RMSPE value, which is given by the radial basis function
with smoothing parameter eta and robustness parameter rho.
Usage
rbf.cv(formula, data, eta, rho, n.neigh, func)
Arguments
formula |
formula that defines the dependent variable as a linear model of independent variables; suppose the dependent variable has name |
data |
SpatialPointsDataFrame: should contain the dependent variable, independent variables, and coordinates. |
eta |
the optimal smoothing parameter; we recommend using the parameter found by minimizing the root-mean-square prediction errors using cross-validation |
rho |
value of optimal robustness parameter; we recommend using the parameter
found by minimizing the root-mean-square prediction errors using cross-validation.
eta and rho parameters can be optimized simultaneously, through the |
n.neigh |
number of nearest observations that should be used for a rbf prediction, where nearest is defined in terms of the spatial locations |
func |
radial basis function model type, e.g. "GAU", "EXPON", "TRI", "TPS", "CRS", "ST", "IM" and "M", are currently available |
Value
returns the RMSPE value
See Also
Examples
data(preci)
coordinates(preci)<-~x+y
rbf.cv(prec~1, preci, eta=0.2589, rho=0, n.neigh=9, func="M")