| est.variograms {geospt} | R Documentation |
Variogram Estimator
Description
Calculate empirical variogram estimates. An object of class
variogram contains empirical variogram estimates which are generated
from a point object and a pair object. A variogram object is stored
as a data frame containing seven columns: lags, bins,
classic, robust,med, trim and
n. The length of each vector is equal to the number of lags
in the pair object used to create the variogram object, say l. The
lags vector contains the lag numbers for each lag, beginning
with one (1) and going to the number of lags (l). The bins vector
contains the spatial midpoint of each lag. The classic, robust,
med and trimmed.mean vectors contain: the classical,
robust, median, and trimmed mean, respectively, which are given, respectively,
by (see Cressie, 1993, p. 75)
classical
\gamma_{c}(h)=\frac{1}{n}\sum_{(i,j)\in
N(h)}(z(x_{i})-z(x_{j}))^{2}
robust,
\gamma_{m}(h)=\frac{(\frac{1}{n}\sum_{(i,j)\in N(h)}
(\sqrt{|z(x_{i})-z(x_{j})|}))^{4}}{0.457+\frac{0.494}{n}}
median
\gamma_{me}(h)=\frac{\mbox(median_{(i,j)\in N(h)}
(\sqrt{|z(x_{i})-z(x_{j})|}))^{4}}{0.457+\frac{0.494}{|N(h)|}}
and trimmed mean
\gamma_{tm}(h)=\frac{(trimmed.mean_{(i,j)\in N(h)}(\sqrt{|z(x_{i})-z(x_{j})|}))^{4}}{0.457+\frac{0.494}{|N(h)|}}
The n vector contains the number |N(h)| of pairs of points
in each lag N(h).
Usage
est.variograms(point.obj, pair.obj, a1, a2, trim)
Arguments
point.obj |
a point object generated by |
pair.obj |
a pair object generated by |
a1 |
a variable to calculate semivariogram for |
a2 |
an optional variable name, if entered cross variograms will be created between |
trim |
percent of trimmed mean |
Value
A variogram object:
lags |
vector of lag identifiers |
bins |
vector of midpoints of each lag |
classic |
vector of classic variogram estimates for each lag |
robust |
vector of robust variogram estimates for each lag |
med |
vector of median variogram estimates for each lag |
trimmed.mean |
vector of trimmed mean variogram estimates for each lag |
n |
vector of the number of pairs in each lag |
Note
Based on the est.variogram function of the sgeostat package
References
Bardossy, A., 2001. Introduction to Geostatistics. University of Stuttgart.
Cressie, N.A.C., 1993. Statistics for Spatial Data. Wiley.
Majure, J., Gebhardt, A., 2009. sgeostat: An Object-oriented Framework for Geostatistical Modeling in S+. R package version 1.0-23.
Roustant O., Dupuy, D., Helbert, C., 2007. Robust Estimation of the Variogram in Computer Experiments. Ecole des Mines, Departement 3MI, 158 Cours Fauriel, 42023 Saint-Etienne, France
See Also
Examples
library(sgeostat, pos=which(search()=="package:gstat")+1)
data(maas)
maas.point <- point(maas)
maas.pair <- pair(maas.point, num.lags=24, maxdist=2000)
maas.v <- est.variograms(maas.point,maas.pair,'zinc',trim=0.1)
maas.v