geojson_list {geojsonio} | R Documentation |
Convert many input types with spatial data to geojson specified as a list
Description
Convert many input types with spatial data to geojson specified as a list
Usage
geojson_list(
input,
lat = NULL,
lon = NULL,
group = NULL,
geometry = "point",
type = "FeatureCollection",
convert_wgs84 = FALSE,
crs = NULL,
precision = NULL,
...
)
Arguments
input |
Input list, data.frame, spatial class, or sf class. Inputs can
also be dplyr |
lat |
(character) Latitude name. The default is |
lon |
(character) Longitude name. The default is |
group |
(character) A grouping variable to perform grouping for polygons - doesn't apply for points |
geometry |
(character) One of point (Default) or polygon. |
type |
(character) The type of collection. One of FeatureCollection (default) or GeometryCollection. |
convert_wgs84 |
Should the input be converted to the
standard CRS for GeoJSON (https://tools.ietf.org/html/rfc7946)
(geographic coordinate reference system, using the WGS84 datum, with
longitude and latitude units of decimal degrees; EPSG: 4326).
Default is |
crs |
The CRS of the input if it is not already defined. This can
be an epsg code as a four or five digit integer or a valid proj4 string.
This argument will be ignored if |
precision |
(integer) desired number of decimal places for coordinates.
Only used with classes from sp classes; ignored for other
classes. Using fewer decimal places decreases object sizes (at the
cost of precision). This changes the underlying precision stored in the
data. |
... |
Ignored |
Details
This function creates a geojson structure as an R list; it does
not write a file - see geojson_write()
for that.
Note that all sp class objects will output as FeatureCollection
objects,
while other classes (numeric, list, data.frame) can be output as
FeatureCollection
or GeometryCollection
objects. We're working
on allowing GeometryCollection
option for sp class objects.
Also note that with sp classes we do make a round-trip,
using sf::st_write()
to write GeoJSON to disk, then read it back in.
This is fast and we don't have to think
about it too much, but this disk round-trip is not ideal.
For sf classes (sf, sfc, sfg), the following conversions are made:
sfg: the appropriate geometry
Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon, GeometryCollection
sfc:
GeometryCollection
, unless the sfc is length 1, then the geometry as abovesf:
FeatureCollection
For list
and data.frame
objects, you don't have to pass in lat
and
lon
parameters if they are named appropriately (e.g., lat/latitude,
lon/long/longitude), as they will be auto-detected. If they can not be
found, the function will stop and warn you to specify the parameters
specifically.
Examples
## Not run:
# From a numeric vector of length 2 to a point
vec <- c(-99.74, 32.45)
geojson_list(vec)
# Lists
## From a list
mylist <- list(
list(latitude = 30, longitude = 120, marker = "red"),
list(latitude = 30, longitude = 130, marker = "blue")
)
geojson_list(mylist)
## From a list of numeric vectors to a polygon
vecs <- list(
c(100.0, 0.0), c(101.0, 0.0), c(101.0, 1.0),
c(100.0, 1.0), c(100.0, 0.0)
)
geojson_list(vecs, geometry = "polygon")
# from data.frame to points
(res <- geojson_list(us_cities[1:2, ], lat = "lat", lon = "long"))
as.json(res)
## guess lat/long columns
geojson_list(us_cities[1:2, ])
geojson_list(states[1:3, ])
geojson_list(states[1:351, ], geometry = "polygon", group = "group")
geojson_list(canada_cities[1:30, ])
## a data.frame with columsn not named appropriately, but you can
## specify them
# dat <- data.frame(a = c(31, 41), b = c(-120, -110))
# geojson_list(dat)
# geojson_list(dat, lat="a", lon="b")
# from data.frame to polygons
head(states)
geojson_list(states[1:351, ],
lat = "lat", lon = "long",
geometry = "polygon", group = "group"
)
# From SpatialPolygons class
library("sp")
poly1 <- Polygons(list(Polygon(cbind(
c(-100, -90, -85, -100),
c(40, 50, 45, 40)
))), "1")
poly2 <- Polygons(list(Polygon(cbind(
c(-90, -80, -75, -90),
c(30, 40, 35, 30)
))), "2")
sp_poly <- SpatialPolygons(list(poly1, poly2), 1:2)
geojson_list(sp_poly)
# From SpatialPolygons class with precision agreement
x_coord <- c(
-114.345703125, -114.345703125, -106.61132812499999,
-106.61132812499999, -114.345703125
)
y_coord <- c(
39.436192999314095, 43.45291889355468, 43.45291889355468,
39.436192999314095, 39.436192999314095
)
coords <- cbind(x_coord, y_coord)
poly <- Polygon(coords)
polys <- Polygons(list(poly), 1)
sp_poly2 <- SpatialPolygons(list(polys))
geojson_list(sp_poly2, geometry = "polygon", precision = 4)
geojson_list(sp_poly2, geometry = "polygon", precision = 3)
geojson_list(sp_poly2, geometry = "polygon", precision = 2)
# From SpatialPoints class with precision
points <- SpatialPoints(cbind(x_coord, y_coord))
geojson_list(points)
# From SpatialPolygonsDataFrame class
sp_polydf <- as(sp_poly, "SpatialPolygonsDataFrame")
geojson_list(input = sp_polydf)
# From SpatialPoints class
x <- c(1, 2, 3, 4, 5)
y <- c(3, 2, 5, 1, 4)
s <- SpatialPoints(cbind(x, y))
geojson_list(s)
# From SpatialPointsDataFrame class
s <- SpatialPointsDataFrame(cbind(x, y), mtcars[1:5, ])
geojson_list(s)
# From SpatialLines class
library("sp")
c1 <- cbind(c(1, 2, 3), c(3, 2, 2))
c2 <- cbind(c1[, 1] + .05, c1[, 2] + .05)
c3 <- cbind(c(1, 2, 3), c(1, 1.5, 1))
L1 <- Line(c1)
L2 <- Line(c2)
L3 <- Line(c3)
Ls1 <- Lines(list(L1), ID = "a")
Ls2 <- Lines(list(L2, L3), ID = "b")
sl1 <- SpatialLines(list(Ls1))
sl12 <- SpatialLines(list(Ls1, Ls2))
geojson_list(sl1)
geojson_list(sl12)
as.json(geojson_list(sl12))
as.json(geojson_list(sl12), pretty = TRUE)
# From SpatialLinesDataFrame class
dat <- data.frame(
X = c("Blue", "Green"),
Y = c("Train", "Plane"),
Z = c("Road", "River"), row.names = c("a", "b")
)
sldf <- SpatialLinesDataFrame(sl12, dat)
geojson_list(sldf)
as.json(geojson_list(sldf))
as.json(geojson_list(sldf), pretty = TRUE)
# From SpatialGrid
x <- GridTopology(c(0, 0), c(1, 1), c(5, 5))
y <- SpatialGrid(x)
geojson_list(y)
# From SpatialGridDataFrame
sgdim <- c(3, 4)
sg <- SpatialGrid(GridTopology(rep(0, 2), rep(10, 2), sgdim))
sgdf <- SpatialGridDataFrame(sg, data.frame(val = 1:12))
geojson_list(sgdf)
# From SpatialPixels
library("sp")
pixels <- suppressWarnings(
SpatialPixels(SpatialPoints(us_cities[c("long", "lat")]))
)
summary(pixels)
geojson_list(pixels)
# From SpatialPixelsDataFrame
library("sp")
pixelsdf <- suppressWarnings(
SpatialPixelsDataFrame(
points = canada_cities[c("long", "lat")],
data = canada_cities
)
)
geojson_list(pixelsdf)
# From sf classes:
if (require(sf)) {
## sfg (a single simple features geometry)
p1 <- rbind(c(0, 0), c(1, 0), c(3, 2), c(2, 4), c(1, 4), c(0, 0))
poly <- rbind(c(1, 1), c(1, 2), c(2, 2), c(1, 1))
poly_sfg <- st_polygon(list(p1))
geojson_list(poly_sfg)
## sfc (a collection of geometries)
p1 <- rbind(c(0, 0), c(1, 0), c(3, 2), c(2, 4), c(1, 4), c(0, 0))
p2 <- rbind(c(5, 5), c(5, 6), c(4, 5), c(5, 5))
poly_sfc <- st_sfc(st_polygon(list(p1)), st_polygon(list(p2)))
geojson_list(poly_sfc)
## sf (collection of geometries with attributes)
p1 <- rbind(c(0, 0), c(1, 0), c(3, 2), c(2, 4), c(1, 4), c(0, 0))
p2 <- rbind(c(5, 5), c(5, 6), c(4, 5), c(5, 5))
poly_sfc <- st_sfc(st_polygon(list(p1)), st_polygon(list(p2)))
poly_sf <- st_sf(foo = c("a", "b"), bar = 1:2, poly_sfc)
geojson_list(poly_sf)
}
## End(Not run)