varhat {genscore} | R Documentation |
Asymptotic variance (times n
) of the estimator for mu
or sigmasq
for the univariate normal on a general domain assuming the other parameter is known.
Description
Asymptotic variance (times n
) of the estimator for mu
or sigmasq
for the univariate normal on a general domain assuming the other parameter is known.
Usage
varhat(mu, sigmasq, mode, param1, param2, est_mu, domain, tol = 1e-10)
Arguments
mu |
A number, the true |
sigmasq |
A number, the true |
mode |
A string, the class of the |
param1 |
A number, the first parameter to the |
param2 |
A number, the second parameter (may be optional depending on |
est_mu |
A boolean. If |
domain |
A list returned from |
tol |
A positive number, tolerance for numerical integration. Defaults to |
Details
The estimates may be off from the empirical variance, or may even be Inf
or NaN
if "mode"
is one of "cosh"
, "exp"
, and "sinh")
as the functions grow too fast.
If est_mu == TRUE
, the function numerically calculates
E\left[\sigma^2 h^2(X)+\sigma^4 {h'}^2(X)\right]/E^2[h(X)],
and if est_mu == FALSE
, the function numerically calculates
E\left[\left(2\sigma^6h^2(X)+\sigma^8{h'}^2(X)\right)(X-\mu)^2\right]/E^2\left[h(X)(X-\mu)^2\right],
where E
is the expectation over the true distribution TN(\mu,\sigma)
of X
.
Value
A number, the asymptotic variance.
Examples
varhat(0, 1, "min_log_pow", 1, 1, TRUE, make_domain("R+", 1))
varhat(0.5, 4, "min_pow", 1, 1, TRUE, make_domain("R+", 1))