| varhat {genscore} | R Documentation |
Asymptotic variance (times n) of the estimator for mu or sigmasq for the univariate normal on a general domain assuming the other parameter is known.
Description
Asymptotic variance (times n) of the estimator for mu or sigmasq for the univariate normal on a general domain assuming the other parameter is known.
Usage
varhat(mu, sigmasq, mode, param1, param2, est_mu, domain, tol = 1e-10)
Arguments
mu |
A number, the true |
sigmasq |
A number, the true |
mode |
A string, the class of the |
param1 |
A number, the first parameter to the |
param2 |
A number, the second parameter (may be optional depending on |
est_mu |
A boolean. If |
domain |
A list returned from |
tol |
A positive number, tolerance for numerical integration. Defaults to |
Details
The estimates may be off from the empirical variance, or may even be Inf or NaN if "mode" is one of "cosh", "exp", and "sinh") as the functions grow too fast.
If est_mu == TRUE, the function numerically calculates
E\left[\sigma^2 h^2(X)+\sigma^4 {h'}^2(X)\right]/E^2[h(X)],
and if est_mu == FALSE, the function numerically calculates
E\left[\left(2\sigma^6h^2(X)+\sigma^8{h'}^2(X)\right)(X-\mu)^2\right]/E^2\left[h(X)(X-\mu)^2\right],
where E is the expectation over the true distribution TN(\mu,\sigma) of X.
Value
A number, the asymptotic variance.
Examples
varhat(0, 1, "min_log_pow", 1, 1, TRUE, make_domain("R+", 1))
varhat(0.5, 4, "min_pow", 1, 1, TRUE, make_domain("R+", 1))