| get_h_hp {genscore} | R Documentation |
Generator of h and hp (derivative of h) functions.
Description
Generator of h and hp (derivative of h) functions.
Usage
get_h_hp(mode, para = NULL, para2 = NULL)
Arguments
mode |
A string, see details. |
para |
May be optional. A number, the first parameter. Default to |
para2 |
May be optional. A number, the second parameter. If |
Details
The mode parameter can be chosen from the options listed below along with the corresponding definitions of h under appropriate choices of para and para2 parameters. Unless otherwise noted, para and para2, must both be strictly positive if provided, and are set to 1 if not provided. Functions h and hp should only be applied to non-negative values x and this is not enforced or checked by the functions.
Internally calls get_h_hp_vector.
asinhAn asinh function
\boldsymbol{h}(\boldsymbol{x})=\mathrm{asinh}(\mathrm{para}\cdot\boldsymbol{x})=\log\left(\mathrm{para}\cdot\boldsymbol{x}+\sqrt{(\mathrm{para}\cdot\boldsymbol{x})^2+1}\right). Unbounded and takes one parameter. Equivalent tomin_asinh(x, para, Inf).coshA shifted cosh function
\boldsymbol{h}(\boldsymbol{x})=\cosh(\mathrm{para}\cdot\boldsymbol{x})-1. Unbounded and takes one parameter. Equivalent tomin_cosh(x, para, Inf).expA shifted exponential function
\boldsymbol{h}(\boldsymbol{x})=\exp(\mathrm{para}\cdot\boldsymbol{x})-1. Unbounded and takes one parameter. Equivalent tomin_exp(x, para, Inf).identityThe identity function
\boldsymbol{h}(\boldsymbol{x})=\boldsymbol{x}. Unbounded and does not take any parameter. Equivalent topow(x, 1)ormin_pow(x, 1, Inf).log_powA power function on a log scale
\boldsymbol{h}(\boldsymbol{x})=\log(1+\boldsymbol{x})^{\mathrm{para}}. Unbounded and takes one parameter. Equivalent tomin_log_pow(x, para, Inf).mcpTreating
\lambda=para,\gamma=para2, the step-wise MCP function applied element-wise:\lambda x-x^2/(2\gamma)ifx\leq\lambda\gamma, or\gamma\lambda^2/2otherwise. Bounded and takes two parameters.min_asinhA truncated asinh function applied element-wise:
\min(\mathrm{asinh}(\mathrm{para}\cdot\boldsymbol{x}),\mathrm{para}_2). Bounded and takes two parameters.min_asinh_adaAdaptive version of
min_asinh.min_coshA truncated shifted cosh function applied element-wise:
\min(\cosh(\mathrm{para}\cdot\boldsymbol{x})-1,\mathrm{para}_2). Bounded and takes two parameters.min_cosh_adaAdaptive version of
min_cosh.min_expA truncated shifted exponential function applied element-wise:
\boldsymbol{h}(\boldsymbol{x})=\min(\exp(\mathrm{para}\cdot\boldsymbol{x})-1,\mathrm{para}_2). Bounded and takes two parameters.min_exp_adaAdaptive version of
min_exp.min_log_powA truncated power on a log scale applied element-wise:
\boldsymbol{h}(\boldsymbol{x})=\min(\log(1+\boldsymbol{x}),\mathrm{para}_2)^{\mathrm{para}}. Bounded and takes two parameters.min_log_pow_adaAdaptive version of
min_log_pow.min_powA truncated power function applied element-wise:
\boldsymbol{h}(\boldsymbol{x})=\min(\boldsymbol{x},\mathrm{para}_2)^{\mathrm{para}}. Bounded and takes two parameters.min_pow_adaAdaptive version of
min_pow.min_sinhA truncated sinh function applied element-wise:
\min(\sinh(\mathrm{para}\cdot\boldsymbol{x}),\mathrm{para}_2). Bounded and takes two parameters.min_sinh_adaAdaptive version of
min_sinh.min_softplusA truncated shifted softplus function applied element-wise:
\min(\log(1+\exp(\mathrm{para}\cdot\boldsymbol{x}))-\log(2),\mathrm{para}_2). Bounded and takes two parameters.min_softplus_adaAdaptive version of
min_softplus.powA power function
\boldsymbol{h}(\boldsymbol{x})=\boldsymbol{x}^{\mathrm{para}}. Unbounded and takes two parameter. Equivalent tomin_pow(x, para, Inf).scadTreating
\lambda=para,\gamma=para2, the step-wise SCAD function applied element-wise:\lambda xifx\leq\lambda, or(2\gamma\lambda x-x^2-\lambda^2)/(2(\gamma-1))if\lambda<x<\gamma\lambda, or\lambda^2(\gamma+1)/2otherwise. Bounded and takes two parameters, wherepara2must be larger than 1, and will be set to 2 by default if not provided.sinhA sinh function
\boldsymbol{h}(\boldsymbol{x})=\sinh(\mathrm{para}\cdot\boldsymbol{x}). Unbounded and takes one parameter. Equivalent tomin_sinh(x, para, Inf).softplusA shifted softplus function
\boldsymbol{h}(\boldsymbol{x})=\log(1+\exp(\mathrm{para}\cdot\boldsymbol{x}))-\log(2). Unbounded and takes one parameter. Equivalent tomin_softplus(x, para, Inf).tanhA tanh function
\boldsymbol{h}(\boldsymbol{x})=\tanh(\mathrm{para}\cdot\boldsymbol{x}). Bounded and takes one parameter.truncated_sinA truncated sin function applied element-wise:
\sin(\mathrm{para}\cdot x)if\mathrm{para}\cdot x\leq\pi/2, or 1 otherwise. Bounded and takes one parameter.truncated_tanA truncated tan function applied element-wise:
\tan(\mathrm{para}\cdot x)if\mathrm{para}\cdot x\leq\pi/4, or 1 otherwise. Bounded and takes one parameter.
For the adaptive modes (names ending with "_ada"), h and hp are first applied to x without truncation. Then inside each column, values that are larger than the para2-th quantile will be truncated. The quantile is calculated using finite values only, and if no finite values exist the quantile is set to 1.
For example, if mode == "min_pow_ada", para == 2, para2 == 0.4, the j-th column of the returned hx will be pmin(x[,j]^2, stats::quantile(x[,j]^2, 0.4)), and the j-th column of hpx will be 2*x[,j]*(x[,j] <= stats::quantile(x[,j]^2, 0.4)).
Value
A function that returns a list containing hx=h(x) (element-wise) and hpx=hp(x) (element-wise derivative of h) when applied to a vector (for mode names not ending with "_ada" only) or a matrix x, with both of the results having the same shape as x.
Examples
get_h_hp("mcp", 2, 4)(0:10)
get_h_hp("min_log_pow", 1, log(1+3))(matrix(0:11, nrow=3))
get_h_hp("min_pow", 1.5, 3)(seq(0, 5, by=0.5))
get_h_hp("min_softplus")(matrix(seq(0, 2, by=0.1), nrow=7))
get_h_hp("min_log_pow_ada", 1, 0.4)(matrix(0:49, nrow=10))
get_h_hp("min_pow_ada", 2, 0.3)(matrix(0:49, nrow=10))
get_h_hp("min_softplus_ada", 2, 0.6)(matrix(seq(0, 0.49, by=0.01), nrow=10))