get_crit_nopenalty {genscore} | R Documentation |
Minimized loss for unpenalized restricted asymmetric models.
Description
Analytic solution of the minimized loss for an unpenalized asymmetric model restricted to a given support. Does not work if symmetric == "symmetric"
.
Usage
get_crit_nopenalty(
elts,
exclude = NULL,
exclude_eta = NULL,
previous_res = NULL
)
Arguments
elts |
A list, elements necessary for calculations returned by get_elts(). |
exclude |
Optional. A p*p binary matrix or a p^2 binary vector, where |
exclude_eta |
Optional. A p-binary vector, similar to |
previous_res |
Optional. A list, the returned list by |
Details
If previous_res
is provided, exclude
and exclude_eta
must be NULL
or be consistent with the estimated support in previous_res
. If previous_res
and exclude
are both NULL
, assume all edges are present. The same applies to the non-profiled non-centered case when previous_res
and exclude_eta
are both NULL
.
Value
A number, the refitted loss.
Examples
# Examples are shown for Gaussian truncated to R+^p only. For other distributions
# on other types of domains, please refer to \code{gen()} or \code{get_elts()}, as the
# way to call this function (\code{get_crit_nopenalty()}) is exactly the same in those cases.
n <- 50
p <- 30
domain <- make_domain("R+", p=p)
h_hp <- get_h_hp("min_pow", 1, 3)
mu <- rep(0, p)
K <- diag(p)
dm <- 1 + (1-1/(1+4*exp(1)*max(6*log(p)/n, sqrt(6*log(p)/n))))
x <- tmvtnorm::rtmvnorm(n, mean = mu, sigma = solve(K),
lower = rep(0, p), upper = rep(Inf, p), algorithm = "gibbs",
burn.in.samples = 100, thinning = 10)
elts_gauss_np <- get_elts(h_hp, x, setting="gaussian", domain=domain,
centered=FALSE, profiled=FALSE, diag=dm)
res_nc_np <- get_results(elts_gauss_np, symmetric="symmetric", lambda1=0.35,
lambda2=2, previous_res=NULL, is_refit=FALSE)
get_crit_nopenalty(elts_gauss_np, previous_res=res_nc_np)