ss.calc.linear {genpwr} | R Documentation |
Function to Calculate Sample Size in Linear Models
Description
Calculates the necessary sample size to acheive the specified level of power to detect an effect size, ES or R2 value, with type 1 error rate, Alpha
Usage
ss.calc.linear(
power = 0.8,
MAF = NULL,
ES = NULL,
R2 = NULL,
sd_y = NULL,
Alpha = 0.05,
True.Model = "All",
Test.Model = "All"
)
Arguments
power |
Vector of the desired power(s) |
MAF |
Vector of minor allele frequencies |
ES |
Vector of effect sizes (difference in means) to detect. Either ES or R2 must be specified. |
R2 |
Vector of R-squared values to detect. Either ES or R2 must be specified. |
sd_y |
Standard deviation of the outcome in the population (ignoring genotype). Either sd_y_x or sd_y must be specified. |
Alpha |
the desired type 1 error rate(s) |
True.Model |
A vector specifying the true underlying genetic model(s): 'Dominant', 'Additive', 'Recessive' or 'All' |
Test.Model |
A vector specifying the assumed genetic model(s) used in testing: 'Dominant', 'Additive', 'Recessive' or 'All' |
Value
A data frame including the total number of subjects required for all combinations of the specified parameters
Examples
ss <- ss.calc.linear(power=0.8,MAF=0.1,
ES=3, R2=NULL, sd_y = 1,Alpha=0.05,
True.Model='All', Test.Model='All')