calc.like.linear {genpwr} | R Documentation |
Function to Calculate Log Likelihood for a Linear Regression Model
Description
Convenience function to calculate the log likelihood of a specified model.
Usage
calc.like.linear(beta, m, es_ab, es_bb, sd_y_x_model, sd_y_x_truth, model)
Arguments
beta |
Vector of linear regression coefficients. |
m |
Minor allele frequency. |
es_ab |
effect size for mean AB - mean AA |
es_bb |
effect size for mean BB - mean AA |
sd_y_x_model |
The standard deviation of Y (the outcome) given X (predictors/genotype) under the test model. |
sd_y_x_truth |
The standard deviation of Y given X (predictors/genotype) given genotype under the true model. |
model |
The genetic model in the linear regression: "Dominant", "Additive", "Recessive", "2df" or "null" |
Value
The log likelihood.
Examples
calc.like.linear(beta = c(0.0000000, 0.1578947), m = 0.1, es_ab = 0, es_bb = 3,
sd_y_x_model = 0.9980797, sd_y_x_truth = 0.9544108, model = "Dominant")
[Package genpwr version 1.0.4 Index]