print.plstree {genpathmox} | R Documentation |
Print function for Pathmox Segmentation Trees
Description
The function print.plstree
returns the pls.pathmox
results.
Usage
## S3 method for class 'plstree'
print(x, ...)
Arguments
x |
An object of class |
... |
Further arguments are ignored. |
Author(s)
Giuseppe Lamberti
References
Lamberti, G. (2021). Hybrid multigroup partial least squares structural equation modelling: an application to bank employee satisfaction and loyalty. Quality and Quantity, doi: 10.1007/s11135-021-01096-9
Lamberti, G., Aluja, T. B., and Sanchez, G. (2017). The Pathmox approach for PLS path modeling: Discovering which constructs differentiate segments. Applied Stochastic Models in Business and Industry, 33(6), 674-689. doi: 10.1007/s11135-021-01096-9
Lamberti, G., Aluja, T. B., and Sanchez, G. (2016). The Pathmox approach for PLS path modeling segmentation. Applied Stochastic Models in Business and Industry, 32(4), 453-468. doi: 10.1002/asmb.2168
Lamberti, G. (2015). Modeling with Heterogeneity, PhD Dissertation.
Sanchez, G. (2009). PATHMOX Approach: Segmentation Trees in Partial Least Squares Path Modeling, PhD Dissertation.
See Also
summary.plstree
, pls.pathmox
,
bar_terminal
, bar_impvar
and plot.plstree
Examples
## Not run:
# Example of PATHMOX approach in customer satisfaction analysis
# (Spanish financial company).
# Model with 5 LVs (4 common factor: Image (IMAG), Value (VAL),
# Satisfaction (SAT), and Loyalty (LOY); and 1 composite construct:
# Quality (QUAL)
# load library and dataset csibank
library(genpathmx)
data("csibank")
# Define the model using the laavan syntax. Use a set of regression formulas to define
# first the structural model and then the measurement model
CSImodel <- "
# Structural model
VAL ~ QUAL
SAT ~ IMAG + QUAL + VAL
LOY ~ IMAG + SAT
# Measurement model
# Composite
QUAL <~ qual1 + qual2 + qual3 + qual4 + qual5 + qual6 + qual7
# Common factor
IMAG =~ imag1 + imag2 + imag3 + imag4 + imag5 + imag6
VAL =~ val1 + val2 + val3 + val4
SAT =~ sat1 + sat2 + sat3
LOY =~ loy1 + loy2 + loy3
"
# Run pathmox on one single variable
age = csibank[,2]
# Transform age into an ordered factor
age = factor(age, levels = c("<=25", "26-35", "36-45", "46-55",
"56-65", ">=66"),ordered = T)
csi.pathmox.age = pls.pathmox(
.model = CSImodel ,
.data = csibank,
.catvar= age,
.alpha = 0.05,
.deep = 1
)
# Visualize the Pathmox results
print(csi.pathmox.age)
## End(Not run)