| qcomposite {gendist} | R Documentation |
Quantile function of composite model.
Description
Computes qf of the composite model.
Usage
qcomposite(p, spec1, arg1, spec2, arg2, initial = 1, lower.tail = TRUE, log.p = FALSE)
Arguments
p |
scalar or vector of probabilities to compute the qf. |
spec1 |
a character string specifying the head parent distribution (for example, "lnorm" if the parent distribution corresponds to the lognormal). |
arg1 |
list of arguments/parameters of the head parent distribution. |
spec2 |
a character string specifying the tail parent distribution (for example, "exp" if the parent distribution corresponds to the exponential). |
arg2 |
list of arguments/parameters of the tail parent distribution. |
initial |
initial values of the threshold, |
lower.tail |
logical; if |
log.p |
logical; if |
Details
The qf of composite model has a general form of:
Q(p) =
Q_{1}(p(1+\phi)F_{1}(\theta)) \mbox{ if } \quad p \leq \frac{1}{1+\phi},
= Q_{2} \left( F_{2}(\theta) + (1-F_{2}(\theta)) \left( \frac{p(1+\phi)-1}{\phi} \right)\right) \mbox{ if } \quad p > \frac{1}{1+\phi}
whereby \phi is the weight component, \theta is the threshold and F_{i}(x) for i=1,2 are the qfs correspond to head and tail parent distributions, respectively.
Value
An object of the same length as p, giving the qf values computed at p.
Author(s)
Shaiful Anuar Abu Bakar
References
Abu Bakar, S. A., Nadarajah, S., Adzhar, Z. A. A. K., & Mohamed, I. (2016). gendist: An R package for generated probability distribution models. PloS one, 11(6).
Cooray, K., & Ananda, M. M. (2005). Modeling actuarial data with a composite lognormal-Pareto model. Scandinavian Actuarial Journal, 2005(5), 321-334.
Scollnik, D. P. (2007). On composite lognormal-Pareto models. Scandinavian Actuarial Journal, 2007(1), 20-33.
Nadarajah, S., & Bakar, S. A. A. (2014). New composite models for the Danish fire insurance data. Scandinavian Actuarial Journal, 2014(2), 180-187.
Bakar, S. A., Hamzah, N. A., Maghsoudi, M., & Nadarajah, S. (2015). Modeling loss data using composite models. Insurance: Mathematics and Economics, 61, 146-154.
Examples
x=runif(10, min=0, max=1)
y=qcomposite(x, spec1="lnorm", arg1=list(meanlog=0.1,sdlog=0.2), spec2="exp",
arg2=list(rate=0.5) )