dcomposite {gendist} | R Documentation |
Probabilty density function of composite model.
Description
Computes pdf of the composite model.
Usage
dcomposite(x, spec1, arg1, spec2, arg2, initial = 1, log = FALSE)
Arguments
x |
scalar or vector of values to compute the pdf. |
spec1 |
a character string specifying the head parent distribution (for example, "lnorm" if the parent distribution corresponds to the lognormal). |
arg1 |
list of arguments/parameters of the head parent distribution. |
spec2 |
a character string specifying the tail parent distribution (for example, "exp" if the parent distribution corresponds to the exponential). |
arg2 |
list of arguments/parameters of the tail parent distribution. |
initial |
initial values of the threshold, |
log |
logical; if |
Details
The pdf of composite model has a general form of:
f(x) =
\frac{1}{1+\phi} f_{1}^{*}(x), \mbox{ if} \quad x \leq \theta,
= \frac{\phi}{1+\phi} f_{2}^{*}(x), \mbox{ if} \quad x > \theta,
whereby \phi
is the weight component, \theta
is the threshold and f_{i}^{*}(x)
for i=1,2
are the truncated pdfs correspond to head and tail parent distributions defined by
f_{1}^{*}(x) = \frac{f_{1}(x)}{F_{1}(\theta)}
and
f_{2}^{*}(x) = \frac{f_{2}(x)}{1-F_{2}(\theta)}
respectively.
Value
An object of the same length as x
, giving the pdf values computed at x
.
Author(s)
Shaiful Anuar Abu Bakar
References
Abu Bakar, S. A., Nadarajah, S., Adzhar, Z. A. A. K., & Mohamed, I. (2016). gendist: An R package for generated probability distribution models. PloS one, 11(6).
Cooray, K., & Ananda, M. M. (2005). Modeling actuarial data with a composite lognormal-Pareto model. Scandinavian Actuarial Journal, 2005(5), 321-334.
Scollnik, D. P. (2007). On composite lognormal-Pareto models. Scandinavian Actuarial Journal, 2007(1), 20-33.
Nadarajah, S., & Bakar, S. A. A. (2014). New composite models for the Danish fire insurance data. Scandinavian Actuarial Journal, 2014(2), 180-187.
Bakar, S. A., Hamzah, N. A., Maghsoudi, M., & Nadarajah, S. (2015). Modeling loss data using composite models. Insurance: Mathematics and Economics, 61, 146-154.
Examples
x=runif(10, min=0, max=1)
y=dcomposite(x, spec1="lnorm", arg1=list(meanlog=0.1,sdlog=0.2), spec2="exp",
arg2=list(rate=0.5) )