| as.CMM {genSurv} | R Documentation |
Coerce to an object of class CMM
Description
Function to coerce objects of class TDCM and THMM to objects of class CMM.
Usage
as.CMM(x)
is.CMM(x)
Arguments
x |
Any R object. |
Value
An object with two classes one being data.frame and the other CMM.
Author(s)
Artur Araújo, Luís Meira Machado and Susana Faria
References
Cox, D.R. (1972). Regression models and life tables. Journal of the Royal Statistical Society: Series B, 34(2), 187-202. doi: 10.1111/j.2517-6161.1972.tb00899.x
Jackson, C. (2011). Multi-State Models for Panel Data: The msm Package for R. Journal of Statistical Software, 38(8), 1–28. doi: 10.18637/jss.v038.i08
Meira-Machado, L., Cadarso-Suárez, C., De Uña- Álvarez, J., Andersen, P.K. (2009). Multi-state models for the analysis of time to event data. Statistical Methods in Medical Research, 18(2), 195-222.
Meira-Machado L., Faria S. (2014). A simulation study comparing modeling approaches in an illness-death multi-state model. Communications in Statistics - Simulation and Computation, 43(5), 929-946. doi: 10.1080/03610918.2012.718841
Meira-Machado, L., Roca-Pardiñas, J. (2011). p3state.msm: Analyzing Survival Data from an Illness-Death Model. Journal of Statistical Software, 38(3), 1-18. doi: 10.18637/jss.v038.i03
Meira-Machado, L., Sestelo M. (2019). Estimation in the progressive illness-death model: a nonexhaustive review. Biometrical Journal, 61(2), 245–263. doi: 10.1002/bimj.201700200
Therneau, T.M., Grambsch, P.M. (2000). Modelling survival data: Extending the Cox Model, New York: Springer.
See Also
as.TDCM,
as.THMM,
genCMM,
genTDCM,
genTHMM.
Examples
# generate TDCM data
tdcmdata <- genTDCM(n=100, dist="exponential", corr=0, dist.par=c(1,1),
model.cens="uniform", cens.par=1, beta=c(-3,2), lambda=10)
# coerce TDCM data to CMM data
cmmdata0 <- as.CMM(tdcmdata)
head(cmmdata0, n=20L)
# generate THMM data
thmmdata <- genTHMM( n=100, model.cens="uniform", cens.par=80, beta= c(0.09,0.08,-0.09),
covar=80, rate= c(0.05,0.04,0.05) )
# coerce THMM data to CMM data
cmmdata1 <- as.CMM(thmmdata)
head(cmmdata1, n=20L)