as.CMM {genSurv} | R Documentation |
Coerce to an object of class CMM
Description
Function to coerce objects of class TDCM
and THMM
to objects of class CMM
.
Usage
as.CMM(x)
is.CMM(x)
Arguments
x |
Any R object. |
Value
An object with two classes one being data.frame
and the other CMM
.
Author(s)
Artur Araújo, Luís Meira Machado and Susana Faria
References
Cox, D.R. (1972). Regression models and life tables. Journal of the Royal Statistical Society: Series B, 34(2), 187-202. doi: 10.1111/j.2517-6161.1972.tb00899.x
Jackson, C. (2011). Multi-State Models for Panel Data: The msm Package for R. Journal of Statistical Software, 38(8), 1–28. doi: 10.18637/jss.v038.i08
Meira-Machado, L., Cadarso-Suárez, C., De Uña- Álvarez, J., Andersen, P.K. (2009). Multi-state models for the analysis of time to event data. Statistical Methods in Medical Research, 18(2), 195-222.
Meira-Machado L., Faria S. (2014). A simulation study comparing modeling approaches in an illness-death multi-state model. Communications in Statistics - Simulation and Computation, 43(5), 929-946. doi: 10.1080/03610918.2012.718841
Meira-Machado, L., Roca-Pardiñas, J. (2011). p3state.msm: Analyzing Survival Data from an Illness-Death Model. Journal of Statistical Software, 38(3), 1-18. doi: 10.18637/jss.v038.i03
Meira-Machado, L., Sestelo M. (2019). Estimation in the progressive illness-death model: a nonexhaustive review. Biometrical Journal, 61(2), 245–263. doi: 10.1002/bimj.201700200
Therneau, T.M., Grambsch, P.M. (2000). Modelling survival data: Extending the Cox Model, New York: Springer.
See Also
as.TDCM
,
as.THMM
,
genCMM
,
genTDCM
,
genTHMM
.
Examples
# generate TDCM data
tdcmdata <- genTDCM(n=100, dist="exponential", corr=0, dist.par=c(1,1),
model.cens="uniform", cens.par=1, beta=c(-3,2), lambda=10)
# coerce TDCM data to CMM data
cmmdata0 <- as.CMM(tdcmdata)
head(cmmdata0, n=20L)
# generate THMM data
thmmdata <- genTHMM( n=100, model.cens="uniform", cens.par=80, beta= c(0.09,0.08,-0.09),
covar=80, rate= c(0.05,0.04,0.05) )
# coerce THMM data to CMM data
cmmdata1 <- as.CMM(thmmdata)
head(cmmdata1, n=20L)