predict.geolm_cmodStd {gear} | R Documentation |
Predict method for geostatistical models
Description
predict
calculates the predicted values at
specified locations. The method can additionally provide
the mean square prediction error (mspe) and perform
conditional simulation.
Usage
## S3 method for class 'geolm_cmodStd'
predict(
object,
newdata,
nsim = 0,
return_type = "SpatialPointsDataFrame",
dmethod = "chol",
compute_mspe = TRUE,
sp = NULL,
...
)
Arguments
object |
An object produced by the |
newdata |
An optional data frame in which to look for the coordinates at which to predict. If omitted, the observed data locations are used. |
nsim |
A non-negative integer indicating the number of realizations to sample at the specified coordinates using conditional simulation. |
return_type |
A character string indicating the type
of object that should be returned. The default is
|
dmethod |
The method used to decompose the
covariance matrix for conditional simulation. Valid
options are |
compute_mspe |
A logical value indicating whether
the mean square prediction error should be calculated.
Default is |
sp |
This argument will be deprecated in the future.
Please use the |
... |
Currently unimplemented. |
Details
The newdata
data frame must include the relevant
covariates for the prediction locations, where the
covariates are specified on the right side of the
~
in object$formula
. newdata
must
also include the coordinates of the prediction locations,
with these columns having the names provided in
object$coordnames
.
Value
A data.frame
,
SpatialPointsDataFrame
,
geardf
, or sf
object with the kriging predictions
pred
, kriging variance/mean-square prediction
error (mspe
), the root mean-square prediction
error mspe
(rmspe
), and the conditional
simulations sim.1
, sim.2
, etc.
sim.1
, sim.2
, etc.
Author(s)
Joshua French
Examples
# generate response
y = rnorm(10)
# generate coordinates
x1 = runif(10); x2 = runif(10)
# data frame for observed data
data = data.frame(y, x1, x2)
# newdata must have columns with prediction coordinates
newdata = data.frame(x1 = runif(5), x2 = runif(5))
# specify a standard covariance model
mod = cmod_std(model = "exponential", psill = 1, r = 1)
# geolm for universal kriging
gearmod_uk = geolm(y ~ x1 + x2, data = data, mod = mod,
coordnames = c("x1", "x2"))
# prediction for universal kriging, with conditional simulation
pred_uk = predict(gearmod_uk, newdata, nsim = 2)
# demonstrate plotting abilities if return_type == "geardf"
pred_geardf = predict(gearmod_uk, newdata,
return_type = "geardf")
plot(pred_geardf, "pred")
plot(pred_geardf, interp = TRUE)
# demonstrate plotting abilities if sp package installed
if (requireNamespace("sp", quietly = TRUE)) {
pred_spdf = predict(gearmod_uk, newdata,
return_type = "SpatialPointsDataFrame")
sp::spplot(pred_spdf, "pred")
sp::spplot(pred_spdf)
}
# demonstrate plotting abilities if sf package installed
if (requireNamespace("sf", quietly = TRUE)) {
pred_sfdf = predict(gearmod_uk, newdata,
return_type = "sf")
plot(pred_sfdf["pred"])
plot(pred_sfdf)
}
# geolm for ordinary kriging
gearmod_ok = geolm(y ~ 1, data = data, mod = mod,
coordnames = c("x1", "x2"))
# prediction for ordinary kriging
pred_ok = predict(gearmod_ok, newdata)
# geolm for simple kriging
gearmod_sk = geolm(y ~ 1, data = data, mod = mod,
coordnames = c("x1", "x2"), mu = 1)
# prediction for simple kriging
pred_sk = predict(gearmod_sk, newdata)