gdm {gdm} | R Documentation |
Fit a Generalized Dissimilarity Model to Tabular Site-Pair Data
Description
The gdm function is used to fit a generalized dissimilarity model to tabular
site-pair data formatted as follows using the formatsitepair
function: distance, weights, s1.xCoord, s1.yCoord, s2.xCoord, s2.yCoord,
s1.Pred1, s1.Pred2, ...,s1.PredN, s2.Pred1, s2.Pred2, ..., s2.PredN. The
distance column contains the response variable must be any ratio-based
dissimilarity (distance) measure between Site 1 and Site 2. The weights column
defines any weighting to be applied during fitting of the model. If equal
weighting is required, then all entries in this column should be set to 1.0
(default). The third and fourth columns, s1.xCoord and s1.yCoord, represent
the spatial coordinates of the first site in the site pair (s1). The fifth
and sixth columns, s2.xCoord and s2.yCoord, represent the coordinates of the
second site (s2). Note that the first six columns are REQUIRED, even if you
do not intend to use geographic distance as a predictor (in which case these
columns can be loaded with dummy data if the actual coordinates are
unknown - though that would be weird, no?). The next N*2 columns contain values
for N predictors for Site 1, followed by values for the same N predictors for
Site 2.
The following is an example of a GDM input table header with three
environmental predictors (Temp, Rain, Bedrock):
distance, weights, s1.xCoord, s1.yCoord, s2.xCoord, s2.yCoord, s1.Temp, s1.Rain, s1.Bedrock, s2.Temp, s2.Rain, s2.Bedrock
Usage
gdm(data, geo=FALSE, splines=NULL, knots=NULL)
Arguments
data |
A data frame containing the site pairs to be used to fit the GDM
(obtained using the |
geo |
Set to TRUE if geographic distance between sites is to be included as a model term. Set to FALSE if geographic distance is to be omitted from the model. Default is FALSE. |
splines |
An optional vector of the number of I-spline basis functions to be used for each predictor in fitting the model. If supplied, it must have the same length as the number of predictors (including geographic distance if geo is TRUE). If this vector is not provided (splines=NULL), then a default of 3 basis functions is used for all predictors. |
knots |
An optional vector of knots in units of the predictor variables to be used in the fitting process. If knots are supplied and splines=NULL, then the knots argument must have the same length as the number of predictors * n, where n is the number of knots (default=3). If both knots and the number of splines are supplied, then the length of the knots argument must be the same as the sum of the values in the splines vector. Note that the default values for knots when the default three I-spline basis functions are 0 (minimum), 50 (median), and 100 (maximum) quantiles. |
Value
gdm returns a gdm model object. The function
summary.gdm
can be used to obtain or print a synopsis of the
results. A gdm model object is a list containing at least the following
components:
- dataname
The name of the table used as the data argument to the model.
- geo
Whether geographic distance was used as a predictor in the model.
- gdmdeviance
The deviance of the fitted GDM model.
- nulldeviance
The deviance of the null model.
- explained
The percentage of null deviance explained by the fitted GDM model.
- intercept
The fitted value for the intercept term in the model.
- predictors
A list of the names of the predictors that were used to fit the model, in order of the amount of turnover associated with each predictor (based on the sum of the I-spline coefficients).
- coefficients
A list of the coefficients for each spline for each of the predictors considered in model fitting.
- knots
A vector of the knots derived from the x data (or user defined), for each predictor.
- splines
A vector of the number of I-spline basis functions used for each predictor.
- creationdate
The date and time of model creation.
- observed
The observed response for each site pair (from data column 1).
- predicted
The predicted response for each site pair, from the fitted model (after applying the link function).
- ecological
The linear predictor (ecological distance) for each site pair, from the fitted model (before applying the link function).
References
Ferrier S, Manion G, Elith J, Richardson, K (2007) Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Diversity & Distributions 13, 252-264.
See Also
formatsitepair, summary.gdm,
plot.gdm, predict.gdm, gdm.transform
Examples
##fit table environmental data
# format site-pair table using the southwest data table
head(southwest)
sppData <- southwest[c(1,2,13,14)]
envTab <- southwest[c(2:ncol(southwest))]
sitePairTab <- formatsitepair(sppData, 2, XColumn="Long", YColumn="Lat", sppColumn="species",
siteColumn="site", predData=envTab)
##fit table GDM
gdmTabMod <- gdm(sitePairTab, geo=TRUE)
summary(gdmTabMod)
##fit raster environmental data
##sets up site-pair table
rastFile <- system.file("./extdata/swBioclims.grd", package="gdm")
envRast <- raster::stack(rastFile)
##environmental raster data
sitePairRast <- formatsitepair(sppData, 2, XColumn="Long",
YColumn="Lat", sppColumn="species",
siteColumn="site", predData=envRast)
##sometimes raster data returns NA in the site-pair table, these rows will
##have to be removed before fitting gdm
sitePairRast <- na.omit(sitePairRast)
##fit raster GDM
gdmRastMod <- gdm(sitePairRast, geo=TRUE)
summary(gdmRastMod)