passage {gdistance} | R Documentation |
Probability of passage
Description
Calculates for each cell the number of passages of a random-walk or randomised shortest paths with given origin(s) and destination(s). Either the total or the net number of passages can be calculated. In the case of multiple origins or destinations, each receives equal weight.
Usage
passage(x, origin, goal, theta, ...)
Arguments
x |
Object of class |
origin |
|
goal |
|
theta |
If zero or missing, a random walk results. If a numeric value 0 < theta < 20 is given, randomised shortest paths are calculated; theta is the degree from which the path randomly deviates from the shortest path |
... |
Additional arguments: totalNet ("total" or "net"), and output ("RasterLayer" or "Transition") |
Details
The net number of passages between i and j is defined as: abs( passages from i to j - passages from j to i ).
Defaults for additional argument totalNet
is "net"
and for output
it is "RasterLayer".
Random walk requires a symmetric transition matrix.
Value
RasterLayer or Transition object, depending on the output argument
Author(s)
Jacob van Etten. Implementation of randomised shortest paths based on Matlab code by Marco Saerens
References
McRae B.H., B.G. Dickson, and T. Keitt. 2008. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 89:2712-2724.
Saerens M., L. Yen, F. Fouss, and Y. Achbany. 2009. Randomized shortest-path problems: two related models. Neural Computation, 21(8):2363-2404.
See Also
Examples
#create a new raster and set all its values to unity.
raster <- raster(nrows=18, ncols=36)
raster <- setValues(raster,rep(1,ncell(raster)))
#create a Transition object from the raster
tr <- transition(raster,mean,4)
trC <- geoCorrection(tr, type="c", scl=TRUE)
trR <- geoCorrection(tr, type="r", scl=TRUE)
#create two coordinates
sP1 <- SpatialPoints(cbind(-105,55))
sP2 <- SpatialPoints(cbind(105,-55))
#randomised shortest paths with theta = 2
rSPraster <- passage(trC, sP1, sP2, 2)
plot(rSPraster)
points(sP1)
points(sP2)
#randomised shortest paths with theta = 0.05
rSPraster <- passage(trC, sP1, sP2, 0.05)
plot(rSPraster)
points(sP1)
points(sP2)
#randomised shortest paths with theta = 0.05
#and total
rSPraster <- passage(trC, sP1, sP2, 0.05, totalNet = "total")
plot(rSPraster)
points(sP1)
points(sP2)
#random walk
rwraster <- passage(trR, sP1, sP2)
plot(rwraster)
points(sP1)
points(sP2)