summary.gcmr {gcmr} | R Documentation |
Methods for gcmr Objects
Description
Methods for extracting information from fitted beta
regression model objects of class "gcmr"
.
Usage
## S3 method for class 'gcmr'
summary(object, ...)
## S3 method for class 'gcmr'
coef(object, ...)
## S3 method for class 'gcmr'
vcov(object, ...)
## S3 method for class 'gcmr'
bread(x, ...)
## S3 method for class 'gcmr'
estfun(x, ...)
Arguments
object , x |
a fitted marginal regression model of class |
... |
additional arguments, but currently not used. |
Value
The function summary.gcmr
returns an object of class "summary.glm", a list with some components of the gcmr
object, plus
coefficients |
a list with components |
aic |
Akaike Information Criterion. |
Function coef
returns the estimated coefficients and vcov
their variance-covariance matrix. Functions bread
and estfun
extract the components of the robust sandwich variance matrix that can be computed with the sandwich
package (Zeileis, 2004; 2006).
Author(s)
Guido Masarotto and Cristiano Varin.
References
Zeileis, A. (2004). Econometric computing with HC and HAC covariance matrix estimators. Journal of Statistical Software 11, issue 10.
Zeileis, A. (2006). Object-oriented computation of sandwich estimators. Journal of Statistical Software 16, issue 9.
See Also
bread
, estfun
, gcmr
, sandwich
.
Examples
data(epilepsy)
fit <- gcmr(counts ~ offset(log(time)) + visit + trt + visit:trt, data = epilepsy,
subset = (id != 49), marginal = negbin.marg, cormat = cluster.cormat(id, "ar1"),
options=gcmr.options(seed=123, nrep=c(25,100) ))
summary(fit)