profile.mlegc {gcKrig} | R Documentation |
Profile Likelihood Based Confidence Interval of Parameters for Gaussian Copula Models in Geostatistical Count Data
Description
This function computes the (approximate) profile likelihood based confidence interval. The algorithm starts by choosing two starting points at different sides of the MLE and using an iterative process to find the approximate lower and upper bound.
Usage
## S3 method for class 'mlegc'
profile(fitted, par.index, alpha = 0.05, start.point = NULL,
method = 'GQT', nrep = 1000, seed = 12345, ...)
Arguments
fitted |
an object of class |
par.index |
the index of the parameter which should be profiled. |
alpha |
the significance level, default is |
start.point |
numeric vector of length 2 indicating the starting points for finding the
left and right bound. If |
method |
Two methods are implemented. If
|
nrep |
the Monte Carlo size of the importance sampling algorithm for likelihood approximation;
only need to be specified if |
seed |
seed of the pseudorandom generator used in Monte Carlo simulation;
only need to be specified if |
... |
other arguments passed. |
Value
Lower and upper bounds of the approximate confidence interval.
Author(s)
Zifei Han hanzifei1@gmail.com
References
Masarotto, G. and Varin, C. (2012) Gaussian copula marginal regression. Electronic Journal of Statistics 6:1517-1549. https://projecteuclid.org/euclid.ejs/1346421603.
Masarotto, G. and Varin C. (2017). Gaussian Copula Regression in R. Journal of Statistical Software, 77(8), 1–26. doi: 10.18637/jss.v077.i08.
Han, Z. and De Oliveira, V. (2018) gcKrig: An R Package for the Analysis of Geostatistical Count Data Using Gaussian Copulas. Journal of Statistical Software, 87(13), 1–32. doi: 10.18637/jss.v087.i13.
See Also
Examples
## Not run:
data(LansingTrees)
Treefit4 <- mlegc(y = LansingTrees[,3], x = LansingTrees[,4],
locs = LansingTrees[,1:2], marginal = zip.gc(link = 'log'),
corr = matern.gc(kappa = 0.5, nugget = TRUE), method = 'GHK')
summary(Treefit4)
profile(Treefit4, 1, 0.05, method = 'GHK', nrep = 1000, seed = 12345)
profile(Treefit4, 2, 0.05, method = 'GHK', nrep = 1000, seed = 12345)
profile(Treefit4, 3, 0.05, method = 'GHK', nrep = 1000, seed = 12345)
profile(Treefit4, 4, 0.05, method = 'GHK', nrep = 1000, seed = 12345)
profile(Treefit4, 5, 0.05, method = 'GHK', nrep = 1000, seed = 12345)
## End(Not run)