calibrate.plot {gbm} | R Documentation |
Calibration plot
Description
An experimental diagnostic tool that plots the fitted values versus the
actual average values. Currently only available when
distribution = "bernoulli"
.
Usage
calibrate.plot(
y,
p,
distribution = "bernoulli",
replace = TRUE,
line.par = list(col = "black"),
shade.col = "lightyellow",
shade.density = NULL,
rug.par = list(side = 1),
xlab = "Predicted value",
ylab = "Observed average",
xlim = NULL,
ylim = NULL,
knots = NULL,
df = 6,
...
)
Arguments
y |
The outcome 0-1 variable. |
p |
The predictions estimating E(y|x). |
distribution |
The loss function used in creating |
replace |
Determines whether this plot will replace or overlay the
current plot. |
line.par |
Graphics parameters for the line. |
shade.col |
Color for shading the 2 SE region. |
shade.density |
The |
rug.par |
Graphics parameters passed to |
xlab |
x-axis label corresponding to the predicted values. |
ylab |
y-axis label corresponding to the observed average. |
xlim , ylim |
x- and y-axis limits. If not specified te function will select limits. |
knots , df |
These parameters are passed directly to
|
... |
Additional optional arguments to be passed onto
|
Details
Uses natural splines to estimate E(y|p). Well-calibrated predictions imply that E(y|p) = p. The plot also includes a pointwise 95
Value
No return values.
Author(s)
Greg Ridgeway gregridgeway@gmail.com
References
J.F. Yates (1982). "External correspondence: decomposition of the mean probability score," Organisational Behaviour and Human Performance 30:132-156.
D.J. Spiegelhalter (1986). "Probabilistic Prediction in Patient Management and Clinical Trials," Statistics in Medicine 5:421-433.
Examples
# Don't want R CMD check to think there is a dependency on rpart
# so comment out the example
#library(rpart)
#data(kyphosis)
#y <- as.numeric(kyphosis$Kyphosis)-1
#x <- kyphosis$Age
#glm1 <- glm(y~poly(x,2),family=binomial)
#p <- predict(glm1,type="response")
#calibrate.plot(y, p, xlim=c(0,0.6), ylim=c(0,0.6))