GBetaP {gbeta} | R Documentation |
Generalized Beta prime distribution
Description
Density, distribution function, quantile function, and random generation for the generalized Beta prime distribution.
Usage
dgbetap(x, c, d, kappa, tau, scale = 1, log = FALSE)
pgbetap(q, c, d, kappa, tau, scale = 1)
rgbetap(n, c, d, kappa, tau, scale = 1, method = "mixture")
qgbetap(p, c, d, kappa, tau, scale = 1)
Arguments
x |
numeric vector |
c , d , kappa , tau |
parameters; they must be strictly positive numbers,
except |
scale |
scale parameter, a strictly positive number |
log |
logical, whether to return the log-density |
q |
numeric vector of quantiles |
n |
positive integer, the desired number of simulations |
method |
the method of random generation, |
p |
numeric vector of probabilities |
References
Stéphane Laurent. Some Poisson mixtures distributions with a hyperscale parameter. Brazilian Journal of Probability and Statistics 26, No. 3 (2012), pp. 265-278. <doi:10.1214/11-BJPS139>
Myriam Chabot. Sur l’estimation du rapport de deux paramètres d’intensité poissonniens et l’estimation par fonctions de masse prédictives. Master thesis. Université de Scherbrooke, 2016.
Examples
library(gbeta)
curve(dgbetap(x, 4, 12, 10, 0.01), to = 10, axes = FALSE, lwd = 2)
axis(1)