fit.gld {gb} | R Documentation |
Fitting a Ramberg-Schmeiser-Tukey (RST) lambda distribution
Description
To fit a Ramberg-Schmeiser-Tukey (RST) lambda distribution with the three moment-matching methods.
Usage
fit.gld(x,method='LMoM')
Arguments
x |
A sample of size at least 6. 'NA' values will be automatically removed. |
method |
Choose GLD fitting method. Default: 'LMoM'. Other options: 'MoM'– method of moments; "MoP", method of percentiles; "LMoM", method of L-moments. 'best' chooses the best fit from the above three methods, which takes a while. |
Author(s)
B. Wang bwang@jaguar1.usouthal.edu
References
Karian, Z.A., Dudewicz, E.J., McDonald, P., 1996. The Extended Generalized Lambda Distribution System for Fitting Distributions to Data: history,completion of theory, tables, applications, the “final word” on moment fits, Comm. in Statist.- Simul. \& Comput. 25(3), 611-642.
Karian, Z.A., Dudewicz, E.J., 2000. Fitting Statistical Distributions: The Generalized Lambda Distribution and Generalized Bootstrap Methods, Chapman and Hall/CRC.
See Also
fit.egld
,
qrsgld
,prsgld
,
rrsgld
,drsgld
.
Examples
mu = 34.5; sig=1.5
y = rnorm(1000,mu,sig)
x = round(y) ### rounding errors
x0 = seq(min(y),max(y),length=100)
f0 = dnorm(x0,mu,sig)
plot(f0~x0,type='l')
lines(density(y),col=4)
## fit with method of moments
(out1 = fit.gld(x, method='MoM'))
lines(out1,col=2)
## Method of percentile
(out2 = fit.gld(x, method='mop'))
lines(out2, col=3)
## Method of L-moments
(out3 = fit.gld(x, method='lmom'))
lines(out3, col=5)
## Fitting EGLD
(out0 = fit.egld(x))
lines(out0,col=6)
legend(max(x0), max(f0), xjust=1,yjust=1,
legend=c("true","kde","MoM","MoP","LMoM","egld"),
lty=c(1,1,1,1,1,1),
col=c(1,4,2,3,5,6))