schebyshev.t.quadrature.rules {gaussquad} | R Documentation |
Create list of shifted Chebyshev quadrature rules
Description
This function returns a list with n
elements containing
the order k
quadrature rule data frame for
the shifted Chebyshev T polynomial
for orders k = 1,\;2,\; \ldots ,\;n
.
Usage
schebyshev.t.quadrature.rules(n,normalized=FALSE)
Arguments
n |
integer value for the highest order |
normalized |
boolean value. if TRUE rules are for orthonormal polynomials, otherwise they are for orthgonal polynomials |
Details
An order k
quadrature data frame is a named data frame that contains
the roots and abscissa values of the corresponding order k
orthogonal polynomial.
The column with name x
contains the roots or zeros and
the column with name w
contains the weights.
Value
A list with n
elements each of which is a data frame
1 |
Quadrature rule data frame for the order 1 shifted Chebyshev polynomial |
2 |
Quadrature rule data frame for the order 2 shifted Chebyshev polynomial |
...
n |
Quadrature rule data frame for the order |
Author(s)
Frederick Novomestky fnovomes@poly.edu
References
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992. Numerical Recipes in C, Cambridge University Press, Cambridge, U.K.
Stroud, A. H., and D. Secrest, 1966. Gaussian Quadrature Formulas, Prentice-Hall, Englewood Cliffs, NJ.
See Also
quadrature.rules
,
schebyshev.t.quadrature
Examples
###
### construct a list of quadrature rule data frames for
### the shifted orthogonal Chebyshev T polynomials
### of orders 1 to 5
###
orthogonal.rules <- schebyshev.t.quadrature.rules( 5 )
print( orthogonal.rules )
###
### construct a list of quadrature rule data frames for
### the shifted orthonormal Chebyshev T polynomials
### of orders 1 to 5
###
orthonormal.rules <- schebyshev.t.quadrature.rules( 5, TRUE )
print( orthonormal.rules )