jacobi.p.quadrature.rules {gaussquad} | R Documentation |
Create list of Jacobi quadrature rules
Description
This function returns a list with n elements containing
the order k
quadrature rule data frame for
the Jacobi P polynomial
for orders k = 1,\;2,\; \ldots ,\;n
.
Usage
jacobi.p.quadrature.rules(n,alpha,beta,normalized=FALSE)
Arguments
n |
integer value for the highest order |
alpha |
numeric value for the first polynomial parameter |
beta |
numeric value for the second polynomial parameter |
normalized |
boolean value. if TRUE rules are for orthonormal polynomials, otherwise they are for orthgonal polynomials |
Details
An order k
quadrature data frame is a named data frame that contains
the roots and abscissa values of the corresponding order k
orthogonal polynomial.
The column with name x
contains the roots or zeros and
the column with name w
contains the weights.
Value
A list with n
elements each of which is a quadrature rule data frame
1 |
Quadrature rule for the order 1 Jacobi polynomial |
2 |
Quadrature rule for the order 2 Jacobi polynomial |
...
n |
Quadrature rule for the order |
Author(s)
Frederick Novomestky fnovomes@poly.edu
References
Abramowitz, M. and I. A. Stegun, 1968. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, Inc., New York.
Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, 1992. Numerical Recipes in C, Cambridge University Press, Cambridge, U.K.
Stroud, A. H., and D. Secrest, 1966. Gaussian Quadrature Formulas, Prentice-Hall, Englewood Cliffs, NJ.
See Also
Examples
###
### construct the list of quadrature rules for
### the Jacobi orthogonal polynomials
### of orders 1 to 5
### alpha = 3 and beta = 2
###
orthogonal.rules <- jacobi.p.quadrature.rules( 5, 3, 2 )
print( orthogonal.rules )
###
### construct the list of quadrature rules for
### the Jacobi orthonormal polynomials
### of orders 1 to 5
### alpha = 3 and beta = 2
###
orthonormal.rules <- jacobi.p.quadrature.rules( 5, 3, 2, TRUE )
print( orthonormal.rules )