| score.fixed.linear/score.fixed.logistic {gaston} | R Documentation | 
Score Test for Covariates with Fixed Effects in Linear or Logistic Mixed Model
Description
Score Test for association between covariates and phenotype.
Usage
 
score.fixed.linear(x, Y, X = matrix(1, length(Y)), K, ...)
score.fixed.logistic(x, Y, X = matrix(1, length(Y)), K, ...)
Arguments
| x | A matrix of covariates | 
| Y | The phenotype vector | 
| X | A covariable matrix. The default is a column vector of ones, to include an intercept in the model | 
| K |  A positive definite matrix or a  | 
| ... |  Optional arguments used to fit null model in  | 
Details
The function score.fixed.linear considers the linear mixed model
 Y = X\alpha + x\beta + \omega_1 + \ldots + \omega_k + \varepsilon 
whereas the score.fixed.logistic function considers the following logistic model
 \mbox{logit}(P[Y=1|X,x,\omega_1,\ldots,\omega_k])  = X\alpha + x\beta + \omega_1 + \ldots + \omega_k
with  \omega_j \sim N(0,\tau_j K_j)  where K_j are Genetic Relationship Matrix (GRM),  \varepsilon \sim N(0,\sigma^2 I_n) 
and fixed effects \alpha and \beta.
The two functions give score test for
H_0 : \beta=0 vs H_1 : \beta\neq 0.  
In this aim, all parameters under null model are estimated with lmm.aireml or logistic.mm.aireml.
Value
A named list of values:
| score | Estimated score | 
| p | The corresponding p-value | 
| log.p | The logarithm of corresponding p-value | 
Author(s)
Hervé Perdry and Claire Dandine-Roulland
See Also
lmm.aireml, logistic.mm.aireml 
Examples
# Load data
data(AGT)
x <- as.bed.matrix(AGT.gen, AGT.fam, AGT.bim)
standardize(x) <- "p"
# Calculate GRM et its eigen decomposition
k <- GRM(x)
eig <- eigen(k)
eig$values <- round(eig$values, 5)
# generate covariate matrix
set.seed(1)
X <- cbind( rbinom(nrow(x), 1, prob=1/2), rnorm(nrow(x)) )
# simulate quantitative phenotype with polygenic component and covariate effects
y <- X %*% c(-1,0.5) + lmm.simu(0.3,1,eigenK=eig)$y
t <- score.fixed.linear(X, y, K=k, verbose=FALSE)
str(t)
# simulate binary phenotype with polygenic component and covariate effects
mu <- X %*% c(-1,0.5) + lmm.simu(1, 0, eigenK=eig)$y
pi <- 1/(1+exp(-mu))
y <- 1*( runif(length(pi))<pi )
tt <- score.fixed.logistic(X, y, K=k, verbose=FALSE)
str(tt)