| lmm.simu {gaston} | R Documentation | 
Linear mixed model data simulation
Description
Simulate data under a linear mixed model, using the eigen decomposition of the variance matrix.
Usage
 lmm.simu(tau, sigma2, K, eigenK = eigen(K), X, beta) Arguments
| tau | Model parameter | 
| sigma2 | Model parameter | 
| K |  (Optional) A positive symmetric matrix  | 
| eigenK |  Eigen decomposition of  | 
| X | Covariable matrix | 
| beta | Fixed effect vector of covariables | 
Details
The data are simulated under the following linear mixed model :
 Y = X\beta + \omega + \varepsilon 
with  \omega \sim N(0,\tau K)  and
 \varepsilon \sim N(0,\sigma^2 I_n) .
The simulation uses K only through its eigen decomposition; the parameter
K is therefore optional.
Value
A named list with two members:
| y |  Simulated value of  | 
| omega | Simulated value of  | 
Author(s)
Hervé Perdry and Claire Dandine-Roulland
See Also
Examples
# generate a random positive matrix 
set.seed(1)
R <- random.pm(503)
# simulate data with a "polygenic component" 
y <-  lmm.simu(0.3, 1, eigenK = R$eigen)
str(y)
[Package gaston version 1.6 Index]