lmm.restricted.likelihood {gaston} | R Documentation |
Likelihood of a linear mixed model
Description
Compute the Restricted or the Full Likelihood of a linear mixed model.
Usage
lmm.restricted.likelihood(Y, X = matrix(1, nrow = length(Y)), K, tau, s2)
lmm.profile.restricted.likelihood(Y, X = matrix(1, nrow = length(Y)), K, h2)
Arguments
Y |
Phenotype vector |
X |
Covariable matrix |
K |
A positive definite matrix or a |
tau |
Value(s) of parameter(s) |
s2 |
Value of parameter |
h2 |
Value(s) of heritability |
Details
Theses function respectively compute the Restricted and the Profile Likelihood under the linear mixed model
Y = X\beta + \omega_1 + \ldots + \omega_k + \varepsilon
with \omega_i \sim N(0,\tau_i K_i)
for i \in 1, \dots,k
and
\varepsilon \sim N(0,\sigma^2 I_n)
.
The variance matrices K_1
, ..., K_k
, are specified through the parameter K
.
The parameter tau
should be a vector of length k
.
The function lmm.restricted.likelihood
computes the restricted
likelihood for the given values of \tau
and \sigma^2
.
Whenever k = 1
, it is similar to lmm.diago.likelihood(tau, s2, Y = Y, X = X, eigenK = eigen(K))
which should be prefered (with a preliminary computation of eigen(K)
).
The function lmm.profile.restricted.likelihood
computes a profile restricted
likelihood: the values of \tau
and \sigma^2
which
maximizes the likelihood are computed under the constraint
{\tau \over \tau + \sigma^2 } = h^2
,
and the profiled likelihood value for these parameters is computed.
Whenever k = 1
, it is similar to lmm.diago.likelihood(h2 = h2, Y = Y, X = X, eigenK = eigen(K))
.
Value
The restricted likelihood value.
Author(s)
Hervé Perdry and Claire Dandine-Roulland
See Also
lmm.diago.likelihood
, lmm.diago
, lmm.aireml
Examples
# Load data
data(AGT)
x <- as.bed.matrix(AGT.gen, AGT.fam, AGT.bim)
# Compute Genetic Relationship Matrix and its eigen decomposition
K <- GRM(x)
eiK <- eigen(K)
# simulate a phenotype
set.seed(1)
y <- 1 + lmm.simu(tau = 1, sigma2 = 2, eigenK = eiK)$y
# compute restricted likelihood for tau = 0.2 and s2 = 0.8
lmm.restricted.likelihood(y, K=K, tau = 0.2, s2 = 0.8)
# compute profile restricted likelihood for h2 = 0.2
lmm.profile.restricted.likelihood(y, K=K, h2 = 0.2)
# identity with the values computed with the diagonalisation trick
lmm.diago.likelihood(tau = 0.2, s2 = 0.8, Y = y, eigenK = eiK)
lmm.diago.likelihood(h2 = 0.2, Y = y, eigenK = eiK)