garchxAvar {garchx} | R Documentation |
Asymptotic Coefficient Covariance
Description
Compute the asymptotic coefficient-covariance of a GARCH(q,p,r)-X model by simulation. Note that the principles of how to use the arch
, garch
, asym
and xreg
arguments are the same as those of garchx
Usage
garchxAvar(pars, arch = NULL, garch = NULL, asym = NULL,
xreg = NULL, vcov.type = c("ordinary", "robust"),
innovations = NULL, Eeta4 = NULL, n = 1e+06, objective.fun = 1,
seed = NULL)
Arguments
pars |
|
arch |
|
garch |
|
asym |
|
xreg |
|
vcov.type |
|
innovations |
|
Eeta4 |
|
n |
integer, the number of observations to use in the simulations |
objective.fun |
integer equal to 1 or 0 that determines the type of objective function to use, see the code of |
seed |
|
Value
A matrix
Author(s)
Genaro Sucarrat, http://www.sucarrat.net/
References
Christian Francq and Le Quien Thieu (2018): 'QML inference for volatility models with covariates', Econometric Theory, doi:10.1017/S0266466617000512 Christian Francq and Jean-Michel Zakoian (2019): 'GARCH Models', 2nd Edition, Wiley
See Also
garchx
, garchxSim
, vcov.garchx
Examples
##asymptotic coefficient-covariance of a garch(1,1)
##note: the estimate is rough, since n is small
intercept <- 0.2
alpha <- 0.1
beta <- 0.8
pars <- c(intercept, alpha, beta)
seed <- 123 #for reproducibility
garchxAvar(pars, arch=1, garch=1, n=10000, seed=seed)