coef.garchx {garchx} | R Documentation |
Extraction functions for 'garchx' objects
Description
Extraction functions for objects of class 'garchx'
Usage
## S3 method for class 'garchx'
coef(object, ...)
## S3 method for class 'garchx'
fitted(object, as.zoo = TRUE, ...)
## S3 method for class 'garchx'
logLik(object, ...)
## S3 method for class 'garchx'
nobs(object, ...)
## S3 method for class 'garchx'
predict(object, n.ahead = 10, newxreg = NULL,
newindex = NULL, n.sim = NULL, verbose = FALSE, ...)
## S3 method for class 'garchx'
print(x, ...)
## S3 method for class 'garchx'
quantile(x, probs=0.025, names = TRUE, type = 7, as.zoo = TRUE, ...)
## S3 method for class 'garchx'
residuals(object, as.zoo = TRUE, ...)
## S3 method for class 'garchx'
toLatex(object, digits = 4, ...)
## S3 method for class 'garchx'
vcov(object, vcov.type = NULL, ...)
Arguments
object |
an object of class 'garchx' |
x |
an object of class 'garchx' |
as.zoo |
logical. If |
n.ahead |
|
newxreg |
|
newindex |
|
n.sim |
|
verbose |
|
probs |
|
names |
|
type |
|
digits |
|
vcov.type |
|
... |
additional arguments |
Value
coef: |
numeric vector containing parameter estimates |
fitted: |
fitted conditional variance |
logLik: |
log-likelihood (normal density) |
nobs: |
the number of observations used in the estimation |
predict: |
a |
print: |
print of the estimation results |
quantile: |
the fitted quantiles, i.e. the conditional standard deviation times the empirical quantile of the standardised innovations |
residuals: |
standardised residuals |
vcov: |
coefficient variance-covariance matrix |
Author(s)
Genaro Sucarrat, http://www.sucarrat.net/
References
Christian Francq and Le Quien Thieu (2018): 'QML inference for volatility models with covariates', Econometric Theory, doi:10.1017/S0266466617000512
See Also
Examples
##simulate from a garch(1,1):
set.seed(123)
y <- garchxSim(1000)
##estimate garch(1,1) model:
mymod <- garchx(y)
##print estimation results:
print(mymod)
##extract coefficients:
coef(mymod)
##extract and store conditional variances:
sigma2hat <- fitted(mymod)
##extract log-likelihood:
logLik(mymod)
##extract and store standardised residuals:
etahat <- residuals(mymod)
##extract coefficient variance-covariance matrix:
vcov(mymod)
##generate predictions:
predict(mymod)