smooth {gamma} | R Documentation |
Smooth
Description
Smoothes intensities.
Usage
signal_smooth(object, ...)
smooth_rectangular(object, ...)
smooth_triangular(object, ...)
smooth_savitzky(object, ...)
## S4 method for signature 'GammaSpectrum'
signal_smooth(object, method = c("rectangular", "triangular", "savitzky"), ...)
## S4 method for signature 'GammaSpectra'
signal_smooth(object, method = c("rectangular", "triangular", "savitzky"), ...)
## S4 method for signature 'GammaSpectrum'
smooth_rectangular(object, m = 3, ...)
## S4 method for signature 'GammaSpectra'
smooth_rectangular(object, m = 3, ...)
## S4 method for signature 'GammaSpectrum'
smooth_savitzky(object, m = 3, p = 2, ...)
## S4 method for signature 'GammaSpectra'
smooth_savitzky(object, m = 3, p = 2, ...)
## S4 method for signature 'GammaSpectrum'
smooth_triangular(object, m = 3, ...)
## S4 method for signature 'GammaSpectra'
smooth_triangular(object, m = 3, ...)
Arguments
object |
A GammaSpectrum or GammaSpectra object. |
... |
Extra parameters to be passed to further methods. |
method |
A |
m |
An odd |
p |
An |
Details
The following smoothing methods are available:
rectangular
Unweighted sliding-average or rectangular smooth. It replaces each point in the signal with the average of
m
adjacent points.triangular
Weighted sliding-average or triangular smooth. It replaces each point in the signal with the weighted mean of
m
adjacent points.savitzky
Savitzky-Golay filter. This method is based on the least-squares fitting of polynomials to segments of
m
adjacent points.
There will be (m - 1) / 2
points both at the beginning and at the end
of the spectrum for which a complete m
-width smooth cannot be
calculated. To prevent data loss, progressively smaller smooths are used at
the ends of the spectrum if method
is unweighted
or weighted
. If the
Savitzky-Golay filter is used, the original (m - 1) / 2
points at the
ends of the spectrum are preserved.
Value
A GammaSpectrum or GammaSpectra object.
Author(s)
N. Frerebeau
References
Gorry, P. A. (1990). General Least-Squares Smoothing and Differentiation by the Convolution (Savitzky-Golay) Method. Analytical Chemistry, 62(6), p. 570-573. doi:10.1021/ac00205a007.
Savitzky, A. & Golay, M. J. E. (1964). Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Analytical Chemistry, 36(8), p. 1627-1639. doi:10.1021/ac60214a047.
See Also
Other signal processing:
baseline
,
peaks_find()
,
peaks_search()
,
signal_integrate()
,
signal_slice()
,
signal_split()
,
signal_stabilize()
Examples
# Import CNF files
spc_file <- system.file("extdata/LaBr.CNF", package = "gamma")
spc <- read(spc_file)
spc <- signal_slice(spc, -c(1:35))
# Plot raw spectrum
spc_clean <- signal_correct(spc)
plot(spc_clean)
# Rectangular smooth
spc_unweighted <- smooth_rectangular(spc, m = 3)
spc_unweighted_clean <- signal_correct(spc_unweighted)
plot(spc_unweighted_clean)
# Triangular smooth
spc_weighted <- smooth_triangular(spc, m = 5)
spc_weighted_clean <- signal_correct(spc_weighted)
plot(spc_weighted_clean)
# Savitzky–Golay
spc_savitzky <- smooth_savitzky(spc, m = 21, p = 2)
spc_savitzky_clean <- signal_correct(spc_savitzky)
plot(spc_savitzky_clean)