doserate {gamma} | R Documentation |
Dose Rate Estimation
Description
dose_fit
builds a calibration curve for gamma dose rate estimation.
Usage
dose_fit(object, background, doses, ...)
dose_predict(object, spectrum, ...)
## S4 method for signature 'GammaSpectra,GammaSpectrum,matrix'
dose_fit(
object,
background,
doses,
range_Ni,
range_NiEi,
details = list(authors = "", date = Sys.time())
)
## S4 method for signature 'GammaSpectra,GammaSpectrum,data.frame'
dose_fit(
object,
background,
doses,
range_Ni,
range_NiEi,
details = list(authors = "", date = Sys.time())
)
## S4 method for signature 'CalibrationCurve,missing'
dose_predict(object, sigma = 1, epsilon = 1.5)
## S4 method for signature 'CalibrationCurve,GammaSpectrum'
dose_predict(object, spectrum, sigma = 1, epsilon = 1.5)
## S4 method for signature 'CalibrationCurve,GammaSpectra'
dose_predict(object, spectrum, sigma = 1, epsilon = 1.5)
Arguments
object |
A GammaSpectra or CalibrationCurve object. |
background |
A GammaSpectrum object of a length-two |
doses |
A |
... |
Currently not used. |
spectrum |
An optional GammaSpectrum or GammaSpectra object in which to look for variables with which to predict. If omitted, the fitted values are used. |
range_Ni , range_NiEi |
A length-two |
details |
A |
sigma |
A |
epsilon |
A |
Details
dose_predict
predicts in situ gamma dose rate.
To estimate the gamma dose rate, one of the calibration curves distributed with this package can be used. These built-in curves are in use in several luminescence dating laboratories and can be used to replicate published results. As these curves are instrument specific, the user may have to build its own curve.
The construction of a calibration curve requires a set of reference spectra for which the gamma dose rate is known and a background noise measurement. First, each reference spectrum is integrated over a given interval, then normalized to active time and corrected for background noise. The dose rate is finally modelled by the integrated signal value used as a linear predictor (York et al., 2004).
See vignette(doserate)
for a reproducible example.
Value
-
dose_fit()
returns a CalibrationCurve object. -
dose_predict()
returns adata.frame
with the following columns:name
(
character
) the name of the spectra.*_signal
(
numeric
) the integrated signal value (according to the value ofthreshold
; seesignal_integrate()
).*_error
(
numeric
) the integrated signal error value (according to the value ofthreshold
; seesignal_integrate()
).gamma_signal
(
numeric
) the predicted gamma dose rate.gamma_error
(
numeric
) the predicted gamma dose rate error.
Author(s)
N. Frerebeau
References
Mercier, N. & Falguères, C. (2007). Field Gamma Dose-Rate Measurement with a NaI(Tl) Detector: Re-Evaluation of the "Threshold" Technique. Ancient TL, 25(1), p. 1-4.
York, D., Evensen, N. M., MartĂnez, M. L. & De Basabe Delgado, J. (2004). Unified Equations for the Slope, Intercept, and Standard Errors of the Best Straight Line. American Journal of Physics, 72(3), p. 367-75. doi:10.1119/1.1632486.
See Also
Examples
## Import CNF files
## Spectra
spc_dir <- system.file("extdata/BDX_LaBr_1/calibration", package = "gamma")
spc <- read(spc_dir)
## Background
bkg_dir <- system.file("extdata/BDX_LaBr_1/background", package = "gamma")
bkg <- read(bkg_dir)
## Get dose rate values
data("clermont")
(doses <- clermont[, c("gamma_dose", "gamma_error")])
## Build the calibration curve
calib_curve <- dose_fit(spc, bkg, doses,
range_Ni = c(300, 2800),
range_NiEi = c(165, 2800))
## Plot the curve
plot(calib_curve, threshold = "Ni")
## Estimate gamma dose rates
dose_predict(calib_curve, spc)