gamlss.spatial-package {gamlss.spatial} | R Documentation |
Spatial Terms in Generalized Additive Models for Location Scale and Shape Models
Description
It allows us to fit Gaussian Markov Random Field within the Generalized Additive Models for Location Scale and Shape algorithms.
Details
The DESCRIPTION file:
Package: | gamlss.spatial |
Type: | Package |
Title: | Spatial Terms in Generalized Additive Models for Location Scale and Shape Models |
Version: | 3.0-2 |
Date: | 2023-10-14 |
Authors@R: | c(person("Fernanda", "De Bastiani", role = c("aut", "cre", "cph"), email = "fernandadebastiani@gmail.com"), person("Mikis", "Stasinopoulos", role = c("aut"), email = "d.stasinopoulos@gre.ac.uk"), person("Robert", "Rigby", role = c("aut")) ) |
Description: | It allows us to fit Gaussian Markov Random Field within the Generalized Additive Models for Location Scale and Shape algorithms. |
License: | GPL-2 | GPL-3 |
URL: | https://www.gamlss.com/ |
Depends: | R (>= 2.15.0), gamlss.dist, gamlss (>= 4.2-7), gamlss.add, spam, mgcv |
Imports: | stats, grDevices, graphics, methods |
Repository: | CRAN |
NeedsCompilation: | no |
Packaged: | 2015-07-09 13:32:17 UTC; stasinom |
Author: | Fernanda De Bastiani [aut, cre, cph], Mikis Stasinopoulos [aut], Robert Rigby [aut] |
Maintainer: | Fernanda De Bastiani <fernandadebastiani@gmail.com> |
RoxygenNote: | 5.0.1 |
Index of help topics:
MRF Markov Random Fields Fitting Functions draw.polys Additional supporting functions for random Markov fields gamlss.gmrf Gaussian Markov Random Field fitting within GAMLSS gamlss.spatial-package Spatial Terms in Generalized Additive Models for Location Scale and Shape Models
Author(s)
Fernanda De Bastiani [aut, cre, cph], Mikis Stasinopoulos [aut], Robert Rigby [aut]
Maintainer: Fernanda De Bastiani <fernandadebastiani@gmail.com>
References
De Bastiani, F. Rigby, R. A., Stasinopoulos, D. M., Cysneiros, A. H. M. A. and Uribe-Opazo, M. A. (2016) Gaussian Markov random spatial models in GAMLSS. Journal of Applied Statistics, pp 1-19.
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.
Rue and Held (2005) Gaussian markov random fields: theory and applications, Chapman & Hall, USA.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07/.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
(see also https://www.gamlss.com/).
Examples
library(mgcv)
data(columb)
data(columb.polys)
m1 <- MRFA(columb$crime, columb$district, polys=columb.polys)
draw.polys(columb.polys, m1)