dMX {gamlss.mx} | R Documentation |
Evaluate the d (pdf) and p (cdf) functions from GAMLSS mixtures
Description
The functions dMX()
and pMX()
can be used to evaluated the
pdf (p function) and the cdf (p function) receptively from a gamlss.family mixture.
The functions getpdfMX()
and getpdfNP()
can be used to evaluate the fitted d
function at a specified observation and therefore for plotting the fitted distribution of a fitted model at this observation.
Usage
dMX(y, mu = list(mu1 = 1, mu2 = 5), sigma = list(sigma1 = 1, sigma2 = 1),
nu = list(nu1 = 1, nu2 = 1), tau = list(tau1 = 1, tau2 = 1),
pi = list(pi1 = 0.2, pi2 = 0.8), family = list(fam1 = "NO", fam2 = "NO"),
log = FALSE, ...)
pMX(q, mu = list(mu1 = 1, mu2 = 5), sigma = list(sigma1 = 1, sigma2 = 1),
nu = list(nu1 = 1, nu2 = 1), tau = list(tau1 = 1, tau2 = 1),
pi = list(pi1 = 0.2, pi2 = 0.8), family = list(fam1 = "NO", fam2 = "NO"),
log = FALSE, ...)
getpdfMX(object = NULL, observation = 1)
getpdfNP(object = NULL, observation = 1)
Arguments
y , q |
vector of quantiles |
mu |
a vector of |
sigma |
a vector of |
nu |
a vector of |
tau |
a vector of |
pi |
a vector of |
family |
a vector of GAMLSS |
log |
whether the |
object |
a fitted |
observation |
the observation number in which we want to plot the fitted mixture |
... |
for extra arguments |
Value
Returns values or pdf or cdf.
Author(s)
Mikis Stasinopoulos
References
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07/.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
Stasinopoulos M.D., Kneib T, Klein N, Mayr A, Heller GZ. (2024) Generalized Additive Models for Location, Scale and Shape: A Distributional Regression Approach, with Applications. Cambridge University Press.
(see also https://www.gamlss.com/).
Examples
fyNO<-dMX(y=seq(0,3,.01), mu=list(1.253, 0.1876), sigma=list(exp(-0.6665 ), exp(-2.573 )),
pi=list(0.4079609, 0.5920391 ), family=list("NO","NO") )
plot(fyNO~seq(0,3,.01), type="l")
FyNO<-pMX(q=seq(0,3,.01), mu=list(1.253, 0.1876), sigma=list(exp(-0.6665 ), exp(-2.573 )),
pi=list(0.4079609, 0.5920391 ), family=list("NO","NO") )
plot(FyNO~seq(0,3,.01), type="l")