NP.control {gamlss.mx} | R Documentation |
Control function for gamlssNP
Description
This is a control function for gamlssNP
function.
Usage
NP.control(EMcc = 0.001, EMn.cyc = 200, damp = TRUE,
trace = TRUE, plot.opt = 3, ...)
Arguments
EMcc |
convergence criterion for the EM |
EMn.cyc |
number of cycles for the EM |
damp |
Not in used |
trace |
whether to print the EM iterations |
plot.opt |
plotting the |
... |
for extra arguments |
Value
Returns a list.
Author(s)
Mikis Stasinopoulos
References
Einbeck, J. Darnell R. and Hinde J. (2006) npmlreg: Nonparametric maximum likelihood estimation for random effect models, R package version 0.34
Rigby, R. A. and Stasinopoulos D. M. (2005). Generalized additive models for location, scale and shape,(with discussion), Appl. Statist., 54, part 3, pp 507-554.
Rigby, R. A., Stasinopoulos, D. M., Heller, G. Z., and De Bastiani, F. (2019) Distributions for modeling location, scale, and shape: Using GAMLSS in R, Chapman and Hall/CRC. An older version can be found in https://www.gamlss.com/.
Stasinopoulos D. M. Rigby R.A. (2007) Generalized additive models for location scale and shape (GAMLSS) in R. Journal of Statistical Software, Vol. 23, Issue 7, Dec 2007, https://www.jstatsoft.org/v23/i07/.
Stasinopoulos D. M., Rigby R.A., Heller G., Voudouris V., and De Bastiani F., (2017) Flexible Regression and Smoothing: Using GAMLSS in R, Chapman and Hall/CRC.
Stasinopoulos M.D., Kneib T, Klein N, Mayr A, Heller GZ. (2024) Generalized Additive Models for Location, Scale and Shape: A Distributional Regression Approach, with Applications. Cambridge University Press.
(see also https://www.gamlss.com/).